
©Jesper Larsson Träff VSC School, January 13th , 2016

Effective MPI Programming:
Concepts, Advanced Features, Doõs and Donõts

Jesper Larsson Träff
traff@par.tuwien.ac.at

Vienna University of Technology

Faculty of Informatics, Institute for Information Systems
Research Group Parallel Computing

mailto:traff@par.tuwien.ac.at

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI is a large and complex, but well -structured interface for
message-passing based parallel programming for high -
performance systems. This tutorial aims to provide an
understanding of basic concepts of the interface, showing how
concepts and (advanced) features of the interface can be put to
work effectively in applications and lead to more read - and
maintainable, better performing and more robust code. More
advanced features that will be covered include non -blocking
collectives, neighborhood collectives, one -sided communication,
derived datatypes and process topologies. The tutorial will
provide room for discussion and interaction.

©Jesper Larsson Träff VSC School, January 13th , 2016

Contents of this tutorial

×What MPI is (and is not)
×Performance expectations and guidelines
×Procedural (communication) features:

ÅPoint- to -point (reminder)
ÅCollective
ÅOne-sided
ÅBlocking and non-blocking semantics

×Declarative features:
ÅDerived (user -defined) datatypes
ÅCommunicators and process groups
ÅVirtual Topologies
ÅAttributes

×Miscellaneous:
Å(Threads and hybrid programming)

But not in this orderé

©Jesper Larsson Träff VSC School, January 13th , 2016

Not in this tutorial

×MPI I/O
×Dynamic process management, intercommunicators
×Tools interface (PMPI and MPI_T)

©Jesper Larsson Träff VSC School, January 13th , 2016

The design of MPI

ÅLong (and ongoing) process that started around 1992
ÅA fortunate convergence of ideas : many distributed systems
around, many programming interfaces and languages, òbest
practiceóé

Interfaces/languages mostly based on message passing model:
ÅFinite set of òprocessesó that operate on local data , running
their own program
ÅAll exchange of data explicit (CSP: synchronous, point- to -point
communication)

[C. A. R. Hoare: Communicating Sequential Processes. Commun. ACM
21(8): 666 -677 (1978)]

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 1:

Message passing does not require (explicit) synchronization,
synchronization is implied with message exchange

In MPI, no need for

MPI_Barrier (MPI_Comm comm)

éexcept, of course, when you need it (e.g., approximate
temporal synchronization for benchmarking)

If there seems to be a semantic need, probably something is
wrong. And barriers may adversely affect performance by
forcing processes to wait

©Jesper Larsson Träff VSC School, January 13th , 2016

ÅòProcessesó (often Unix/Linux processes, but can be something
else, e.g. threads) operate on local data
ÅProcesses execute own program (different processes may have
different programs, MIMD)
ÅMessage delivery is reliable , and ordered
ÅAbstracts (ignores) properties of communication system

ÅCommunication models:
ÅPoint-to -point (two processes explicitly involved), different
semantic variations
ÅOne-sided (two processes involved, only one explicitly)
ÅCollective (many processes involved), many operations,
different semantics
ÅMPI/IO (communication with file system)

MPI: A liberal incarnation of the message passing model

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 2:

Message passing leads to deterministic parallel execution

éunless you program non-deterministically (randomization, MPI
wildcard communication)

MPI has very clear rules for when communication takes place
(matching communication calls)

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 3:

Communicate as little as possible , as much as necessary

Performance rule of thumb:
Communication operations are expensive (compared to local
computation), avoid excessive communication

Communication is necessary for processes to collaborate and to
achieve speed-up when solving non-trivial problems

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI, the Message-Passing Interface

ÅMPI is an interface (library) specification, (C and FORTRAN,
not C++), it is not a particular implementation

ÅAn MPI implementation is a library, not a programming language

ÅMPI is defined for high performance

ÅMPI does not have a performance model , does not mandate
specific algorithms, nor guarantee certain performance

Many things a compiler cannot optimize, use sometimes tedious

A very wise decision: MPI implementations possible on all
kinds of different systems, has enabled scalability

Internal buffering rarely needed, no argument checking, no
meta-information with messages

Plenty: mpich, OpenMPI , mvapich, vendorsé

Disclaimer and apologies: all examples will be in C

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI, the Message-Passing Interface

MPI is designed to be portable (can be implemented on very
different types of systems)

MPI applications are portable to a very high degree

But needs some care, correct use of the standard

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI, the Message-Passing Interface

MPI itself is designed for library building : Strong concepts for

ÅEncapsulation, isolation (communicators)
ÅInformation hiding (attributes)
ÅQuerying
ÅCall interception (PMPI)

Many application programmers will (should?) not see any MPI
calls

[Torsten Hoefler , Marc Snir : Writing Parallel Libraries with MPI -
Common Practice, Issues, and Extensions. EuroMPI 2011: 345-355]

©Jesper Larsson Träff VSC School, January 13th , 2016

Evolution of the MPI Standard

ÅMPI 1.0, 1.1, 1.2: 1994-1995

ÅPoint- to -point and collective
communication, datatypes , é

ÅMPI 2.0: 1997

ÅOne-sided communication ,
parallel I/O, dynamic process
management

Implementations:

ANL: mpich , 1996

NEC: MPI/SX, 2000 ÅMPI 2.1: 2008

Åconsolidation

ÅMPI 2.2:2009

ÅScalable topologies, new
collectives

mpich2 , 2004
OpenMPI , 2006

é

©Jesper Larsson Träff VSC School, January 13th , 2016

Evolution of the MPI Standard Implementations:

mpich but (still)
not mature; quality,
performance?
Announced at SC
2012

MPI 3.0: 2012
ÅNon-blocking collectives,
topological (neighbor) collectives,
extended one -sided communication,
performance tool support
ÅC++ bindings removed
ÅStill no fault - tolerance support

MPI 3.0: Vienna, Sept. 21, 2012

MPI 3.1
June 2015

MPI 3.1, 2015
ÅFixes
ÅNon-blocking I/O

©Jesper Larsson Träff VSC School, January 13th , 2016

The MPI standard: now (from 2015) 3.1

MPI 3.1: June 4 th , 2015, see
www.mpi-forum.org/docs/mpi -3.1/mpi31-report.pdf

ÅThe standard is the rock -bottom for questions on MPI
ÅNot a formal specification , but (quite) precise (a lot of effort
has been investedé)
Åéexcept where it is deliberately imprecise (progress rules :
when exactly message transfers happen)
ÅQuite readable (recommended, better than many other books)
ÅMaintained by the MPI Forum: an open gathering for interested
parties, regular meetings 4 -6 times a year (MPI is not an ISO,
ANSI or IEEE standard, itõs free)

Most MPI implementations implement (most of)
MPI 3.1 (yearly status at SC and other events)

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI is a large standard

ÅMPI 3.1 around 416 C functions
ÅThere is a (good) reason for most
Åébut it is possible to do with with only 6 functions (init,
finalize, size, rank, send, recv) plus a few more
Å Concepts and functionality are expressive and powerful and
work well together

ăMPI is designed not to make easy things easy, but to make
difficult things possibleò , Gropp, EuroPVM/MPI 2004

Conjecture (tested at EuroPVM/MPI 2002):
For any MPI feature there will be at least one (significant) user
depending essentially on exactly this feature

©Jesper Larsson Träff VSC School, January 13th , 2016

Contagious issues

ÅIs MPI too large after all?
ÅIs MPI scalable (specification and implementations)?

ÅSupport for fault - tolerance (some argue that the MPI
specification is fault - tolerant enough, and that fault - tolerance
is an implementation issue; some think differently, and FT has
been debated for 10 years in the MPI Forum)

ÅOne-sided communication

[William Gropp, Ewing L. Lusk: Fault Tolerance in Message Passing
Interface Programs. IJHPCA 18(3): 363 -372 (2004)]

[Pavan Balaji , Darius Buntinas, David Goodell, William Gropp, Torsten
Hoefler , Sameer Kumar, Ewing L. Lusk, Rajeev Thakur , Jesper
Larsson Träff:MPI on millions of Cores. Parallel Processing Letters
21(1): 45-60 (2011)]

MPI has scaled to >1,000,000 cores!

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI is not a high-level interface for general purpose
(distributed) parallel programming. In particular, application
programmer (or library on top of MPI) must handle

ÅData structure distribution
ÅDomain decomposition
ÅLoad balancing
Åé

but MPI can help

MPI for communication

MPI is a communication interface that makes it possible to
exploit modern hardware (oops: GPU? FPGA? Accelerators?)
very efficiently (given a good implementation)

©Jesper Larsson Träff VSC School, January 13th , 2016

#include < mpi.h >

int main(int argc , char * argv [])

{

 int rank, size;

 MPI_Init (& argc,&argv);

 MPI_Comm_size (MPI_COMM_WORLD,&size);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 // é

 MPI_Finalize ();

 return 0;

}

Example: first (noop) MPI program

The MPI header file

First MPI call: init the library

Last MPI call: close it

MPI runs: Use it

©Jesper Larsson Träff VSC School, January 13th , 2016

#include < mpi.h >

int main(int argc , char * argv [])

{

 int rank, size;

 MPI_Init (& argc,&argv);

 MPI_Comm_size (MPI_COMM_WORLD,&size);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 // é

 MPI_Finalize ();

 return 0;

}

Compile with mpicc, run with mpirun/ mpiexecé Not here:
Consult your
systems
manuals

mpirun
starts
processes,
after
MPI_Init ()
they are
MPI
processes

©Jesper Larsson Träff VSC School, January 13th , 2016

ÅMPI header file mpi.h : defines MPI constants, all function
prototypes
ÅNo MPI calls possible before MPI_Init (); no MPI calls possible
after MPI_Finalize (); MPI cannot be restarted
ÅMPI_Init (): initializes internal data structures
ÅMPI_Finalize (): cleans up internal data structures, but does not
free application created MPI objects
ÅMPI_Init () and MPI_Finalize () are collective , all started
processes must call

MPI_Initialized (int *flag)
MPI_Finalized (int *flag)

Two exceptions :

For layered libraries

©Jesper Larsson Träff VSC School, January 13th , 2016

A word on error handling

Almost all MPI functions return an error code, ÍMPI_SUCCESS
means something wrong or unexpected happened

Good practice always to check the error code:

 é

 err = MPI_Comm_size (MPI_COMM_WORLD,&size);

 if (err!=MPI_SUCCESS) {

 // do something

 é

 }

 err = MPI_Comm_rank(MPI_COMM_WORLD,&rank);

Most often, this is not doneé (errors mostly leads to abort)

©Jesper Larsson Träff VSC School, January 13th , 2016

Note:
ătext that states that errors will be handled, should be read as
may be handledò, MPI 3.1, Section 8.3, p. 340

Depending on the MPI library implementation, it is sometimes
possible to do something sensible if errors occur, see standard
on error handlers

MPI is designed for high performance. It is user responsibility
to write correct programs

©Jesper Larsson Träff VSC School, January 13th , 2016

#include < mpi.h >

int main(int argc , char * argv [])

{

 int rank, size;

 MPI_Init (& argc,&argv);

 MPI_Comm_size (MPI_COMM_WORLD,&size);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 // é

 MPI_Finalize ();

 return 0;

}

First MPI communicator, first MPI operations

©Jesper Larsson Träff VSC School, January 13th , 2016

i

j

m

k

l

Communication
medium: concrete
network,é MPI

process

Physical
Processor

After MPI_Init ():
MPI processes have a rank in MPI_COMM_WORLD

MPI processes (mostly)
statically bound to
physical processor/core.
Do not migrate (across
node boundaries)

©Jesper Larsson Träff VSC School, January 13th , 2016

Communicator:
ÅFundamental MPI abstraction (object) representing an ordered
set (group) of processes that can communicate
ÅAll communication operations are wrt . a communicator: only
processes in the same communicator can communicate
ÅA communicator has a size: the number of processes
ÅEach process in communicator uniquely identified by a rank,
0Òrank<size in communicator
ÅProcesses can belong to many communicators

MPI_COMM_WORLD

Initial communicator created by MPI_Init (), contains all started
processes

©Jesper Larsson Träff VSC School, January 13th , 2016

Communicators are the fundamental mechanism for
encapsulation and library building

MPI_Comm comm;

é

MPI_Isend (é,comm);

é // lots of MPI communication

LIB_call (é,comm);

comm

comm

LIB:
MPI_Irecv (é, comm);

©Jesper Larsson Träff VSC School, January 13th , 2016

Communicators are the fundamental mechanism for
encapsulation and library building

MPI_Comm_dup(MPI Comm oldcomm , MPI_Comm * newcomm)

MPI_Comm comm, libcomm ;

// initialize LIB

MPI_Comm_dup(comm,&libcomm);

é

MPI_Isend (é,comm);

é // lots of MPI communication

LIB_call (é,libcomm);

comm

libcomm

Communication between
the two different
communicators not
possible

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Comm_dup(MPI Comm comm, MPI_Comm * newcomm)

is a blocking, collective operation : must be called by all
processes in comm, upon return, new communicator has been
created

Communicators are global, distributed objects, can only be
manipulated by collective operations

ÅMPI_Comm_dup()
ÅMPI 3.1: MPI_Comm_dup_with_info (), MPI_Comm_idup()
ÅMPI_Comm_split ()
ÅMPI 3.0 : MPI_Comm_split_type ()
ÅMPI_Comm_create ()
ÅMPI 3.1: MPI_Comm_create_group ()

Many other operations implicitly create new communicators

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Comm_free (MPI_Comm * comm)

Collective operation for freeing a communicator, call returns
MPI_COMM_NULL if successful

Good practice always to free created MPI objects after use

Observations :
ÅNew communicators can be created out of old ones. Processes
can only be removed, not added (dynamic process management is
not treated here)
ÅCommunicators never change
ÅOperations on communicators are all collective

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 4:

MPI objects (communicators, groups, windows, datatypes ,
requests, operators, é) are opaque, static and immutable

ÅIt is (mostly) not possible to look into the MPI objects (partial
exception : MPI_Status), objects are manipulated through
operations (local and collective)
ÅNew objects can be created out of old ones
ÅThere are NULL objects (invalid object, returned when objects
is freed) for most MPI objects

©Jesper Larsson Träff VSC School, January 13th , 2016

Collective semantic rules

ÅA collective operation (MPI_Comm_dup(é,comm),
MPI_Bcast (é,comm), é) must be called by all processes in
communicator (collective over comm, or group)

ÅCorrectness: if some process in communicator calls collective
operation A, then all other processes (in this communicator)
must also call A, and no other collective operation (on
communicator) inbetween

ÅOperation is blocking if operation is (locally) completed upon
return: communicator has been created, messages sent, buffers
can be reusedé
ÅOperation has non-local completion semantics , if completion
depends on action by other processes

©Jesper Larsson Träff VSC School, January 13th , 2016

Process i:
MPI_Comm_dup(comm,&newcomm);

MPI_Bcast (é,comm);

MPI_Bcast (é,comm);

MPI_Comm_dup(comm,&newcomm);

Process j:

is erroneous : Processes do not call collectives on comm in the
same order

What happens?

ÅMay deadlock (likely)
ÅMay crash (also possible)
ÅMay òworkó (sometimes) ð with disastrous consequences later

MPI is designed for high
performance, it is user responsibility
to write correct programs

©Jesper Larsson Träff VSC School, January 13th , 2016

Process i:
MPI_Comm_dup(comm,&newcomm);

MPI_Bcast (é,comm);

MPI_Bcast (é,comm);

MPI_Comm_dup(comm,&newcomm);

Process j:

is erroneous : Processes do not call collectives on comm in the
same order

Correctness tools can help, check your local MPI installation

[Jesper Larsson Träff , Joachim Worringen: Verifying Collective MPI
Calls. PVM/MPI 2004: 18 -27]
[Christopher Falzone, Anthony Chan, Ewing L. Lusk, William Gropp: A
Portable Method for Finding User Errors in the Usage of MPI
Collective Operations. IJHPCA 21(2): 155 -165 (2007)]

©Jesper Larsson Träff VSC School, January 13th , 2016

Process i:
MPI_Bcast (é,comm);

MPI_Comm_dup(comm,&newcomm);

MPI_Bcast (é,comm);

MPI_Comm_dup(comm,&newcomm);

Process j:

is correct : Processes now call collectives on comm in the same
order

©Jesper Larsson Träff VSC School, January 13th , 2016

Local representations of MPI processes: groups

MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

Get the process group (rank ordered set of processes) out of
the communicator. Local -completion operations for creating new
groups out of old ones include

ÅMPI_Group_size (), MPI_Group_rank ()
MPI_Group_translate_ranks ()
ÅMPI_Group_compare ()

ÅMPI_Group_union (), MPI_Group_intersection (),
MPI_Group_difference ()
ÅMPI_Group_incl (), MPI_Group_excl ()
ÅMPI_Group_range_incl (), MPI_Group_range_excl ()

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_Group_free (MPI_Group *group)

Groups needed for one -sided communication (and communicator
creation)

As with communicators, only possible to restrict/reorder the
set of processes in group, not to add new processes

©Jesper Larsson Träff VSC School, January 13th , 2016

Example: 2d stencil computation

Solving Poisson Equation on the unit square [0,1]x[0,1]

ų2u(x,y)/ųx2 + ų2u(x,y)/ųy2 = f(x,y)

u(x,y) = g(x,y) on the boundary

uk+1[i,j] = ¼(uk[i+1,j]+uk[i -1,j]+uk[i,j+1]+uk[i,j -1] ðh2f(i/ n,j /n)

boils down to iterating

on an nxn matrix (n large).

©Jesper Larsson Träff VSC School, January 13th , 2016

u[i,j]

u[i+1,j]

u[i,j+1] u[i,j -1]

u[i -1,j]

Updates follow a regular 5 -point stencil pattern

Typical
parallelization with
p (some square)
processes:
2d regular
decomposition

nxn Boundary
conditions

©Jesper Larsson Träff VSC School, January 13th , 2016

nxn

©Jesper Larsson Träff VSC School, January 13th , 2016

n/ pxn/p
nxn

i

MPI process
assigned to each
n/p x n/p block,
updates locally on
block i-1 i+1

Assume p divides
n, use regular
decomposition to
minimize surface
(communication)
to volume (work)
ratio

©Jesper Larsson Träff VSC School, January 13th , 2016

i l r

u

d

Before next
iteration, each
MPI process
needs to
exchange
boundary
row/column with 4
neighboring
processes

©Jesper Larsson Träff VSC School, January 13th , 2016

Problem 1: Identifying neighboring processes

Processes in communicator are ordered linearly, 0, 1, é size-1;
need to find rank of neighboring processes in virtual mesh

Solution 1: by hand, chose row or column major order of
processes, do the calculationsé

Solution 2: Use MPI

©Jesper Larsson Träff VSC School, January 13th , 2016

Process 0
coordinate

(0,0)

Process 2
coordinate

(0,2)

Process 1
coordinate

(0,1)

Process 3
coordinate

(1,0)

Process 5
coordinate

(1,2)

Process 4
coordinate

(1,1)

Process 6
coordinate

(2,0)

Process 8
coordinate

(2,2)

Process 7
coordinate

(2,1)

Virtual Cartesian
topology:
MPI processes
organized by row
order numbering
into d -dimensional
mesh/torus.

Support functions
for translating
between ranks
and coordinates

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Cart_create (MPI Comm comm, int ndims ,
 const int dims[], const int periods[],
 int reorder, MPI_Comm * cartcomm)

Creates new communicator, where processes have been
organized into mesh (periods[i]=0) or torus (periods[i]=1) of
ndims dimesions; dimension i has size dims[i]

Øi=0
ndims-1dims[i] Ò size(comm)

If there are too many processes in comm, some processes will
not be in Cartesian communicator, cartcomm =MPI_COMM_NULL

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Dims_create (int nodes, int ndims , int dims[])

[Jesper Larsson Träff , Felix Donatus Lübbe: Specification Guideline
Violations by MPI_Dims_create . EuroMPI 2015: 19:1-19:2]

Application decides on best dimension sizes (often close to
squareroot of p, but dependsé), before calling
MPI_Cart_create ()

MPI provides some helper functionality to suggest a good
factorization of p (nodes) into d (ndims) factors

Beware: current implementations are not good at all (and not
really suited for modern, hierarchical systems)

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Cart_shift (MPI_Comm cartcomm ,
 int direction, int displacement,
 int *source, int *destination)

MPI_Cart_coords (MPI_Comm cartcomm , int rank, int
maxdims , int coords [])

MPI_Cart_rank (MPI_Comm cartcomm , int coords [],
 int *rank)

Translates d -dimensional coordinate vector into rank

Translates rank into d -dimensional coordinate

Find ranks of neighbors in dimension direction

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Comm comm, cartcomm ;

MPI_Comm_size (comm,&p);

r = sqrt (p); c = p/r; // or try MPI_Dims_create

dim[0] = c; dim[1] = r;

period[0] = 0; period[1] = 0;

reorder = 0;

MPI_Cart_create (comm,2,dim,period,reorder,&newcomm);

Int r, l, u, d; // the ranks of the 4 neighbors

MPI_Cart_shift (newcomm,0, 1,&r,&l);

MPI_Cart_shift (newcomm,1, 1,&u,&d);

Topology is a (non-periodic) mesh, neighbors on border are
MPI_PROC_NULL (special rank that can be used in point - to -
point communication to sometimes avoid handling special cases)

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Comm comm, cartcomm ;

MPI_Comm_size (comm,&p);

r = sqrt (p); c = p/r; // or try MPI_Dims_create

dim[0] = c; dim[1] = r;

period[0] = 0; period[1] = 0;

reorder = 0;

MPI_Cart_create (comm,2,dim,period,reorder,&newcomm);

Int r, l, u, d; // the ranks of the 4 neighbors

MPI_Cart_shift (newcomm,0, 1,&r,&l);

MPI_Cart_shift (newcomm,1, 1,&u,&d);

What is reorder? What if reorder = 1; ?

©Jesper Larsson Träff VSC School, January 13th , 2016

Virtual topologies

A virtual process topology describes a pattern of most likely or
most significant communication between MPI processes:

ÅCartesian: MPI processes likely to communicate along the
dimensions of d -dimensional mesh/torus
Å(Distributed) Graph: pattern described as a directed graph

reorder=1 :
MPI may attempt to reorder processes in new communicator,
such that neighbors in virtual topology are close in physical
communication network

©Jesper Larsson Träff VSC School, January 13th , 2016

(0,1)

(1,1)

(0,0)

(2,0)

(2,1)

(0,2)

(1,2)

(1,0)

(2,2)

Communicator with some mapping of ranks to physical
processors/cores

Reorder=1

©Jesper Larsson Träff VSC School, January 13th , 2016

(0,0) (0,1)

(1,1)

(2,0) (2,1)

(0,2)

(1,2) (1,0)

(2,2)

émay be mapped to match physical topology

Physical 2d, 3d, 5d
torus (was: BlueGene,
Cray, etc.; is: Fujitsu K -
Computer)

Does it work? Do MPI
libraries reorder virtual
topologies?

Rarely, but tryé

1. Graph embedding is an NP-hard optimization problem
2. Not obvious what the objectives really are

©Jesper Larsson Träff VSC School, January 13th , 2016

Data redistribution may be necessary:

ÅFor each rank i in old comm, find out where i is in cartcomm
ÅSend data (from old i to new i in either of communicator)
ÅMPI does not do data redistribution , user responsibility

But MPI can help :

©Jesper Larsson Träff VSC School, January 13th , 2016

assert(cartcomm !=MPI_COMM_NULL);

int torank , fromrank ; // to be computed

int rank, cartrank ;

MPI_Group group, cartgroup ;

MPI_Comm_group(comm,&group);

MPI_Comm_group(cartcomm,&cartgroup);

// where has rank been mapped to?

MPI_Comm_rank(comm,&rank); // rank in old comm

MPI_Group_translate_rank (cartcomm,1,&rank,comm,

 &torank);

// torank may be MPI_UNDEFINED

// if cartcomm smaller than comm

MPI_Comm_rank(cartcomm,&cartrank);

MPI_Group_translate_ranks (cartcomm,1,&cartrank,comm,

 &fromrank);

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Group_translate_ranks (MPI_Group group1,
 int n, const int ranks1[],
 MPI_Group group 2,
 int ranks2[])

Translate list of ranks of processes in group1 into ranks in
group2

©Jesper Larsson Träff VSC School, January 13th , 2016

Virtual topologies

A communicator with a virtual topology is still a fully general
MPI communicator

ÅAll processes can communicate, point - to -point, collective, one -
sided
ÅCommunicator can be used to create further, new
communicators

Virtual topology does not forbid communication (but certain
communication may be preferred, more efficient)

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Topo_test (MPI_Comm comm, int * topotype)

The returned topotype can be
ÅMPI_CART: The communicator is Cartesian
ÅMPI_GRAPH: The communicator is a (non -scalable) graph
ÅMPI_DIST_GRAPH: The communicator is a distributed graph
ÅMPI_UNDEFINED: The communicator has no virtual topology

The topotype is (implementation wise) stored as an attribute of
the communicator:

Query functionality (for library building)

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Cart_get (MPI_Comm cartcomm ,
 int maxdims ,
 int dims[], int periods[], int coords [])

MPI_Cartdim_get (MPI_Comm cartcomm , int * ndims)

Additional query functionality (similar for distributed graphs)

maxdims is the size of the arrays in the call, only this much
information is returned

©Jesper Larsson Träff VSC School, January 13th , 2016

User defined attributes

For library building

Possible to associate own, user -defined attributes with MPI
objects like communicators, datatypes , and windows

MPI mechanism is somewhat awkward (generate key, write copy
and deletion functions), check the standard

©Jesper Larsson Träff VSC School, January 13th , 2016

Solution 1: Point - to -point communication

i l r

d

u

Iterate:

MPI_Send(é,u,é,comm);

MPI_Send(é,d,é,comm);

MPI_Send(é,l,é,comm);

MPI_Send(é,r,é,comm);

MPI_Recv(é,u,é,comm,&stat);

MPI_Recv(é,d,é,comm,&stat);

MPI_Recv(é,l,é,comm,&stat);

MPI_Recv(é,r,é,comm,&stat);

// update

May or may not deadlock! Depends on implementation and size of
data sent

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Send (void * buf , int count, MPI_Datatype type,
 int destination, int tag, MPI_Comm comm)

ÅBlocking send: when call returns, data have left buffer, buf can
be reused
ÅNon-local completion semantics : completion may depend on
action by receiving process
ÅReturn from call does not imply anything about action by
receiving process

MPI library implementation practice (for high performance):
ÅShort messages are internally buffered
ÅMedium messages handled by special protocol
ÅLong messages pipelined, rendezvous protocol

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI library implementation practice (for high performance):
ÅShort messages are internally buffered
ÅMedium messages handled by special protocol
ÅLong messages pipelined, rendezvous protocol

This practice is NOT prescribed by MPI standard, how it is
done is implementation dependent, and differ among libraries
and systems

MPI_Send(é,comm);

MPI_Recv(é,comm);

MPI_Send(é,comm);

MPI_Recv(é,comm);
?

Exchange may work, but is implementation dependent. Unsafe!

©Jesper Larsson Träff VSC School, January 13th , 2016

Definition : MPI program is unsafe if termination depends on
whether messages are internally buffered.

ÅAn unsafe program may or may not deadlock

ÅBehavior is dependent on MPI library implementation (how large
internal buffers are allowed) and perhaps on concrete context
(how may processes, which communication)

ÅUnsafe programs are not portable

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Sendrecv (é,u,é,d,é,comm);

MPI_Sendrecv (é,d,é,u,é,comm);

MPI_Sendrecv (é,l,é,r,é,comm);

MPI_Sendrecv (é,r,é,l,é,comm);

// update

Remedy: MPI_Sendrecv ()

i l r

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Request request[8];

MPI_Status statuses[8];

MPI_Isend (é,u,é,comm,&request [0]);

MPI_Isend (é,d,é,comm,&request [1]);

MPI_Isend (é,l,é,comm,&request [2]);

MPI_Isend (é,r,é,comm,&request [3]);

MPI_Irecv (é,u,é,comm,&request [4]);

MPI_Irecv (é,d,é,comm,&request [5]);

MPI_Irecv (é,l,é,comm,&request [6]);

MPI_Irecv (é,r,é,comm,&request [7]);

MPI_Waitall (8,request,statuses);

// update

Remedy: Non-blocking communication

©Jesper Larsson Träff VSC School, January 13th , 2016

Non-blocking communication

Semantic advantages : makes it easier to avoid deadlocks, and
make programs safe. Non-blocking collectives with MPI 3.0

Performance advantage (?): makes it possible to overlap
communication with computation

MPI_Isend (void * buf , int count, MPI_Datatype type,
 int destination, int tag, MPI_Comm comm,
 MPI_Request *request)

Non-blocking send: local completion semantics , call returns
Immediately, but buffer is still in use

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Isend (void * buf , int count, MPI_Datatype type,
 int destination, int tag, MPI_Comm comm,
 MPI_Request *request)

Non-blocking send: local completion semantics , call returns
I mmediately, but buffer is still in use

Effect as MPI_Send () achieved by MPI_Wait () call, buffer
free, but no guarantees about what has happened at receiving
side

ÅMPI_(I) Ssend(): Synchronous send, returns when receiver has
started reception
ÅMPI_(I) Bsend(): Buffered send, local completion semantics,
data buffered in attached buffer in user space

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Request request[8];

MPI_Status statuses[8];

MPI_Isend (é,u,é,comm,&request [0]);

MPI_Isend (é,d,é,comm,&request [1]);

MPI_Isend (é,l,é,comm,&request [2]);

MPI_Isend (é,r,é,comm,&request [3]);

MPI_Irecv (é,u,é,comm,&request [4]);

MPI_Irecv (é,d,é,comm,&request [5]);

MPI_Irecv (é,l,é,comm,&request [6]);

MPI_Irecv (é,r,é,comm,&request [7]);

// update non - border region

MPI_Waitall (8,request,statuses);

// update border

Do computation here

Communication has
been initiated

©Jesper Larsson Träff VSC School, January 13th , 2016

n/p x n/p 1. Initiate
communication on
boundary

©Jesper Larsson Träff VSC School, January 13th , 2016

n/p x n/p 1. Initiate
communication on
boundary

2. Compute on
internal elements,
as long as there
are no
dependencies on
boundary
elements

©Jesper Larsson Träff VSC School, January 13th , 2016

n/p x n/p 1. Initiate
communication on
boundary

2. Compute on
internal elements,
as long as there
are no
dependencies on
boundary
elements

©Jesper Larsson Träff VSC School, January 13th , 2016

n/p x n/p 1. Initiate
communication on
boundary

2. Compute on
internal elements,
as long as there
are no
dependencies on
boundary
elements

3. Complete
communication,
complete
computation on
boundary

©Jesper Larsson Träff VSC School, January 13th , 2016

On progress of communication

MPI_Wait ();

Local
time

MPI_Isend (); Large msg

MPI_Recv ();

Message Passing, conceptual

©Jesper Larsson Träff VSC School, January 13th , 2016

Local
time

Header

Part 1

Part n

Ack to send

Ack to send

Message Passing, more realistic

MPI_Wait ();

MPI_Isend ();

MPI_Recv ();

©Jesper Larsson Träff VSC School, January 13th , 2016

Local
time

Header

Part 1

Part n

Ack to send

Ack to send

Protocol
progress :

Possibility 1:

Hardware

MPI_Wait ();

MPI_Isend ();

MPI_Recv ();

©Jesper Larsson Träff VSC School, January 13th , 2016

Local
time

Header

Part 1

Part n

Ack to send

Ack to send

Protocol
progress :

Possibility 2:

Separate
thread

MPI_Wait ();

MPI_Isend ();

MPI_Recv ();

©Jesper Larsson Träff VSC School, January 13th , 2016

Local
time

Header

Part 1

Part n

Ack to send

Ack to send

Protocol
progress :

Possibility 3:

Each MPI
call makes
progress

MPI_Wait ();

MPI_Isend ();

MPI_Recv ();

©Jesper Larsson Träff VSC School, January 13th , 2016

Local
time

Header

Part 1

Part n

Ack to send

Ack to send

Protocol
progress :

Possibility 3:

Each MPI
call makes
progress

Application enforced progress: difficult to tune, may be non -
portable, but I sometimes (often?) necessary

MPI_Test ();

MPI_Test ();

MPI_Wait ();

MPI_Isend ();

MPI_Recv ();

©Jesper Larsson Träff VSC School, January 13th , 2016

Progress

MPI libraries often use mixed strategies :
1. Hardware, whenever possible (ăoffload to NICò)
2. MPI calls to make progress
3. Sometimes thread support (ăprogress thread ò)

Note :
Thread support sometimes considered too expensive for HPC,
sometimes not possible (because of simple OS)

Good practice : frequent MPI calls when using non-blocking
operations ; but difficult to tune, possibly not portable

MPI standard is intentionally loose on progress to allow
different implementations

©Jesper Larsson Träff VSC School, January 13th , 2016

Problem 2: Where are the data?

Each process
1. needs data to row -1 and row n/p from up and down

processes
2. contributes data in row 0 and row n/p -1 to up and down

processes
3. needs data to column -1 and column n/p from left and right

processes
4. contributes data in column 0 and column n/p -1 to left and

right processes

Region of overlap is called halo, can be deeper than 1
row/column (and save communication at the cost of space)

©Jesper Larsson Träff VSC School, January 13th , 2016

Row 0

Row -1 Column n/p

Halo: one extra column per process

©Jesper Larsson Träff VSC School, January 13th , 2016

Communication calls take buffer arguments and communicate
serially from/to these buffers

Communication buffers always have a datatype and an element
count, for example

MPI_Bcast (void* buffer, int count, MPI_Datatype type ,
 int root, MPI_Comm comm)

Datatypes are MPI objects that (can) correspond to the basic
datatypes in C (and FORTRAN)

©Jesper Larsson Träff VSC School, January 13th , 2016

Basic MPI_Datatype C type

MPI_CHAR char

MPI_SHORT (signed) short (int)

MPI_INT int

MPI_LONG (signed) l ong (int)

MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_C_BOOL _Bool

MPI_WCHAR wchar_t

©Jesper Larsson Träff VSC School, January 13th , 2016

Basic MPI_Datatype C type

MPI_INT8_T int8__t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_INT8_T uint8__t

MPI_INT16_T uint16_t

MPI_INT32_T uint32_t

MPI_INT64_T uint64_t

©Jesper Larsson Träff VSC School, January 13th , 2016

Basic MPI_Datatype C type

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_LONG_DOUBLE_COMPLEX long double _Complex

©Jesper Larsson Träff VSC School, January 13th , 2016

Special datatypes

Basic MPI_Datatype

MPI_BYTE Uninterpreted bytes

MPI_PACKED Special, packed data (*)

(*) generated by MPI_Pack/ MPI_Unpack only

Basic MPI_Datatype C type Fortran type

MPI_AINT MPI_Aint INTEGER

(KIND=MPI_ADDRESS_KIND)

MPI_OFFSET MPI_Offset INTEGER

(KIND=MPI_OFFSET_KIND)

MPI_Aint : address sized int

©Jesper Larsson Träff VSC School, January 13th , 2016

Communication operations transfer a serialized stream of
elements of basic datatype from one process to another

Stream of basic elements is called a type signature

Example: count=7 of MPI_INT describes the signature
<int,int,int,int,int,int,int >

Correctness rule for any type of communication: the signature
of the sent elements must be identical(*) to the signature of
the elements to be received

(*) for point - to -point and one-sided: sent signature must be a
prefix of expected to be received signature

©Jesper Larsson Träff VSC School, January 13th , 2016

Communication operations transfer a serialized stream of
elements of basic datatype from one process to another

Stream of basic elements is called a type signature

Example: count=7 of MPI_INT describes the signature
<int,int,int,int,int,int,int >

Correctness rule for any type of communication: the signature
of the sent elements must be identical(*) to the signature of
the elements to be received

MPI is designed for high performance: no meta - information on
type signature is sent, it is user responsibility to write correct
programs

©Jesper Larsson Träff VSC School, January 13th , 2016

int N = 1000;

int a[N];

MPI_Send(a,N,MPI_INT,j,777,MPI_COMM_WORLD);

MPI_Status status;

int N = 1000; // or larger

int b[N];

MPI_Recv (b,N,MPI_INT,i,MPI_COMM_WORLD,&status);

Rank i:

Rank j:

©Jesper Larsson Träff VSC School, January 13th , 2016

int N = 1000;

int a[N];

MPI_Send(a,N,MPI_INT,j,777,MPI_COMM_WORLD);

MPI_Status status;

int N = 1000; // or larger

double b[N];

MPI_Recv (b,N,MPI_DOUBLE,i,MPI_COMM_WORLD,&status);

Rank i:

Rank j:

Erroneous. But MPI library will (most likely) not complain. MPI is
designed for high performance

©Jesper Larsson Träff VSC School, January 13th , 2016

int N = 1000;

int a[N];

MPI_Send(a,N,MPI_INT,j,777,MPI_COMM_WORLD);

MPI_Status status;

int N = 1000; // or larger

int b[N];

MPI_Recv (b,N * sizeof (int), MPI_BYTE,i,MPI_COMM_WORLD,

 &status);

Rank i:

Rank j:

Also erroneous, and very bad practice

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 5:

All MPI communication is typed, and consists of sequences of
elements of basic types. Types must be respected

Basic datatypes have underlying semantics, and keeping
elements typed (not streams of uninterpreted bytes) makes it
possible to communicate across heterogeneous systems , e.g.
different word size, different endianness, é

©Jesper Larsson Träff VSC School, January 13th , 2016

Stencil example: row and column data

C stores 2 -dimensional arrays in row major order, so rows form
consecutive sequences of elements in memory. Communication
can be done as sequences of basic elements, e.g., MPI_DOUBLE

Column elements are non-consecutive, but regularly strided in
process memory. How can this be handled?

Solution 1: by hand, pack column elements into consecutive,
intermediate buffer, send as sequence of MPI_DOUBLE

Solution 2: Use MPI to do the work

Solution 0 : Element by element

©Jesper Larsson Träff VSC School, January 13th , 2016

for (i =0; i <n/p; i ++) {

 MPI_Send(&matrix[i][0],1,MPI_DOUBLE,é,comm);

}

Element by element:

Packing by hand:

ÅTakes time
ÅTakes space
ÅFor complex, irregular data layouts, writing efficient packing
routines is non -trivial (and may not be portable: cache -system)

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 6:

Message-passing is better for bulk transfers , exchange as large
messages as possible

Communication operations have latency/overhead independent
of message size. Overhead can be significant:
ÅHardware
ÅSoftware
ÅAlgorithmic (for collective operations: lower bounds on number
of required communication rounds)

Overhead/latency captured in communication cost models
(linear, LogGP, é)

Overheads can be amortized by large messages that can exploit
full communication bandwidth

©Jesper Larsson Träff VSC School, January 13th , 2016

Derived (user -defined) datatypes

General mechanism for

ÅDescribing arbitrarily complex, non -consecutive and
heterogeneous (different basic datatypes) layouts of data in
memory
ÅSerializing access to structured data in communication
operations: from type map (sequence of basic datatypes with
and addresses) to type signature
ÅFixing units of communication

ÅCan be used with all communication models: point - to -point, one-
sided, collective; essential for MPI I/O specification

©Jesper Larsson Träff VSC School, January 13th , 2016

Applications with non -contiguous data layouts (sub -matrices,
stencils, irregular structures, é)

Åeither explicitly pack/unpack data at communication operations,
or

Ådescribe data layout as derived datatype , and delegate any
necessary packing/unpacking to MPI library

MPI_Type_create é(é,&newtype);
MPI_Type_commit (&newtype);

MPI_Bcast (buf,MPI_BYTE ,é);

MPI_Bcast (buf,newtype ,é);

©Jesper Larsson Träff VSC School, January 13th , 2016

Derived datatype advantages

Descriptive :
ÅòHigher leveló description of structure of data, no need to
bother with tedious&specialized pack/unpack routines
ÅAll handling of structured data delegated to MPI library

Performance :
ÅEfficient, pipelined, once -and-for -all pack/unpack functionality,
saves space for intermediate buffers in user space
ÅCommunication operations with internal buffering genuinely
benefit , datatype engine copies directly into internal buffers
ÅCommunication system with non -contiguous (strided) operations
can be exploited

Potential for MPI aware compilersé

©Jesper Larsson Träff VSC School, January 13th , 2016

Derived datatype mechanism

Set of increasingly general/complex/confusing constructors
that describe where the basic elements are (displacements),
what they are (basic datatype), and in what order they shall be
accessed

MPI_Type_commit (MPI_Datatype *type)

MPI_Type_free (MPI_Datatype *type)

Commit needed to make new datatype usable in communication;
handle for MPI library to perform optimizations

Good practice to free datatypes when no longer used; datatypes
can take up some space

©Jesper Larsson Träff VSC School, January 13th , 2016

Basetype: basic or user-defined

contiguous

vector

indexed

struct

2 3 4 5

0 1 2 3 4

0 1 2 3 4 5 6 7 8

0 1 8 9 10 7 6

0 1 2 3 5 6 8 9 10 7 4

Sequence numbers: order in which basetype are serialized

Constructor overview

©Jesper Larsson Träff VSC School, January 13th , 2016

Basetype: basic or derived

True extent : difference between first and last element (byte)
in datatype , òfootprintó

Size : number of actual elements (Bytes) occupied by datatype

Extent = 16 (assuming all is Bytes), Size = 11

The extent (not true extent) is used put typed elements after
each other

Lower bound

©Jesper Larsson Träff VSC School, January 13th , 2016

MPI_Type_size (MPI_Datatype type, int *size)

MPI_Type_get_extent (MPI_Datatype type,
 MPI_Aint *lb, MPI_Aint *extent)

Careful : extent and lb are MPI_Aint , bytes is int

Extent is a unit for putting elements after each other, and need
not be the actual footprint of the datatype . The footprint is
the true extent

MPI_Type_get_true_extent (MPI_Datatype type,
 MPI_Aint *lb,
 MPI_Aint *extent)

©Jesper Larsson Träff VSC School, January 13th , 2016

Basetype: basic or derived

extent (for repetition)

0 1 2 3 4 5
Space for
description: 1 word

MPI_Type_contiguous (int count, MPI_Datatype oldtype ,
 MPI_Datatype * newtype)

©Jesper Larsson Träff VSC School, January 13th , 2016

Basetype: basic or derived

extent

stride (in units of basetype)

0 1 2 3 8 4 5 6 7

Space for description: 3 words

MPI_Type_vector (int count,
 int blocklength , int stride,
 MPI_Datatype oldtype ,
 MPI_Datatype * newtype)

©Jesper Larsson Träff VSC School, January 13th , 2016

Column of n/p x n/p matrix

MPI_Datatype column ;

int nn = n/p;

MPI_Type_vector (nn,1,nn,MPI_DOUBLE,

 &column);

MPI_Type_commit (& column);

MPI_Isend (&m[0][0],1,column,l,é,comm);

MPI_Isend (&m[0][nn -1],1,column,r,é,

 comm);

row 0, nn columns row 1, nn columns

é é é

MPI_Type_free (& column);

©Jesper Larsson Träff VSC School, January 13th , 2016

Principle 7:

Use MPI datatypes for transferring static, complex data
layouts whenever possible and convenient

ÅCommunication using a datatype should be no slower (faster!)
than first copying (manually, or with MPI_Pack/ MPI_Unpack)
into intermediate buffer and then sending contiguous
(MPI_PACKED) buffer

ÅApply principle with some care:
ÅPerformance of MPI derived datatypes was bad in early MPI
libraries
ÅPerformance has improved significantly , but there is still work
to do

©Jesper Larsson Träff VSC School, January 13th , 2016

ÅUse derived datatypes for conciseness and performance
whereever possible

ÅComplain to MPI library implementer (and MPI community) if
performance anomalies are discovered

Principle 7:

Use MPI datatypes for transferring static, complex data
layouts whenever possible and convenient

Golden MPI rule

©Jesper Larsson Träff VSC School, January 13th , 2016

Data type performance expectation:

MPI_Send(sendbuf,1,type,é,comm);

int position = 0;

MPI_Pack (sendbuf,1,type,packbuf,packsize,position,

 comm);

MPI_Send(packbuf,1,MPI_PACKED,é,comm);

Otherwise, datatype mechanism would not seem to make any
sense (performance wise), user could do better with
MPI_Pack()/ MPI_Unpack ()

should be no slower (and hopefully faster) than

©Jesper Larsson Träff VSC School, January 13th , 2016

Experiment:

Send and receive (ping -pong benchmark) some amount of data as
vector with fixed stride and varying blocklength ; compare to
MPI_Pack()/ MPI_Unpack () and intermediate, packed buffer;
compare to raw performance with consecutive buffer

Which is better?

Stride = 100000 elements (MPI_DOUBLE)

©Jesper Larsson Träff VSC School, January 13th , 2016

mvapich2-1.9 on
small
Infiniband /AMD
cluster

©Jesper Larsson Träff VSC School, January 13th , 2016

mvapich2-1.9 on
small
Infiniband /AMD
cluster

©Jesper Larsson Träff VSC School, January 13th , 2016

NECmpi 1.3.1 on
small
Infiniband /AMD
cluster

©Jesper Larsson Träff VSC School, January 13th , 2016

NECmpi 1.3.1 on
small
Infiniband /AMD
cluster

©Jesper Larsson Träff VSC School, January 13th , 2016

OpenMPI 1.8.4
on small
Infiniband /AMD
cluster

