r

Jesper Larsson Traff
traff@par.tuwien.ac.at

Vienna University of Technology
Faculty of Informatics, Institute for Information Systems
Research Group Parallel Computing

VSC School, January 13,2016 ®©Jesper Larsson Traff 1 U

Computing WIEN



mailto:traff@par.tuwien.ac.at

MPI is a large and complex, but well -structured interface for
message-passing based parallel programming for high -
performance systems. This tutorial aims to provide an
understanding of basic concepts of the interface, showing how
concepts and (advanced) features of the interface can be put to
work effectively in applications and lead to moreread - and
maintainable, better performing and more robust code. More
advanced features that will be covered include non -blocking
collectives, neighborhood collectives, one -sided communication,
derived datatypes and process topologies. The tutorial will
provide room for discussion and interaction.

Para

o VSC School, January 13,2016 ®©Jesper Larsson Traff mn




Parallel

Computing

Contents of this tutorial

x What MPI is (and is not)
x Performance expectations and guidelines
X Procedural (communication) features:
APoint-to - point (reminder)
AKCollective
MOne-sided
Mlocking and non-blocking semantics
x Declarative features:
Merived (user -defined) datatypes
ACommunicators and process groups
Avirtual Topologies
Aattributes
x Miscellaneous:
AThreads and hybrid programming)
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x MPI11/O
X Dynamic process management, intercommunicators
x Tools interface (PMPI and MPI1_T)

Para
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The design of MPI

A.ong (and ongoing) process that started around 1992

A fortunate convergence of ideas : many distributed systems
around, many programming I nterfac
practiceoeé

Interfaces/languages mostly based on  message passing model
Ainite set of oOpr oc dsasds dquniingat o]
their own program

Al exchange of data explicit  (CSP: synchronous, point-to -point
communication)

[C. A. R. Hoare: Communicating Sequential Processes. Commun ACM
21(8): 666 -677 (1978)]
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Principle 1:

Message passing does not require (explicit) synchronization,
synchronization is implied with message exchange

In MPI, no ne

MPI_Barrier mn)

éexcepts o0 Dekedsite(e.g., approximate
temporal synchronization for benchmarking)

If there seems to be a semantic need, probably something is
wrong. And barriers may adversely affect performance by
forcing processes to wait
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MPI: A liberal incarnation of the message passing model

AMProcesseso6 (often Unix/ Linux pr
else, e.g. threads) operate on local data

Arocesses execute own program (different processes may have

different programs, MIMD)

MMessage delivery is reliable , and ordered

Adbstracts ( ignores) properties of communication system

ACommunication models:
APoint-to - point (two processes explicitly involved), different
semantic variations
HOne-sided (two processes involved, only one explicitly)
ACollective (many processes involved), many operations,
different semantics
AVIPI/10 (communication with file system)

Para
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Principle 2:

Message passing leads to deterministic parallel execution

é unless you program non-deterministically (randomization, MPI
wildcard communication)

MPI has very clear rules for when communication takes place
(matching communication calls)

Para
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Principle 3:

Communicate as little as possible , as much as necessary

Performance rule of thumb:
Communication operations are expensive (compared to local
computation), avoid excessive communication

Communication is necessary for processes to collaborate and to
achieve speed-up when solving non-trivial problems
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MPI, the Message-Passing Interface

AVIPI1 is an interface (library) specification, ( C and FORTRAN,
not C+4), itis not a particular implementation

Plenty: mpich, OpenMPI, mvapich, v e nd q

A\n MPI implementation is a library, not a programming language
Many things a compiler cannot optimize, use sometimes tedious

AVIPI is defined for  high performance

Internal buffering rarely needed, no argument checking, no
meta-information with messages

AVIPI does not have a performance model , does not mandate
specific algorithms, nor guarantee certain performance

A very wise decision: MPIl implementations possible on all
kinds of different systems, has enabled scalability .J
WiEN
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MPI, the Message-Passing Interface

MPI is designed to be portable (can be implemented on very
different types of systems)

MPI applications are portable to a very high degree

But needs some care, correct use of the standard

Para
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MPI, the Message-Passing Interface

MPI itself is designed for library building : Strong concepts for

A=ncapsulation, isolation (communicators)
Anformation hiding (attributes)

Auerying
ACall interception (PMPI)

Many application programmers will (should?) not see any MPI
calls

[Torsten Hoefler , Marc Snir: Writing Parallel Libraries with MPI -
Common Practice, Issues, and Extensions. EuroMPl 2011: 345-355]
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Evolution of the MPI Standard _

AVIPI 1.0, 1.1, 1.2: 1994-1995 ANL: mpich , 1996

APoint-to - point and collective
communication, datatypes, ¢ B

= AVPI 2.0: 1997

e

fOne-sided communication,
parallel I/O, dynamic process

management
S AVIPI 2.1: 2008
ON )
Aconsolidation mpich2 , 2004
OpenMPI, 2006
AVIP1 2.2:2009

AScalable topologies, new
collectives

Vo AP R
3 ay 1A
Computing m n
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Evolution of the MPI Standard _

mpich but (still)
not mature; quality,
performance?
Announced at SC
2012

MPI 3.0: 2012

ANon-blocking collectives,
topological (neighbor) collectives,
extended one -sided communication,
performance tool support

AC++ bindings removed

Astill no fault -tolerance support

MPI1 3.1, 2015

Kixes

ANon-blocking I/0 MPI 3.1
June 2015

T : i

MPI 3.0: Vienna, Sept. 21, 2012




The MPI standard: now (from 2015) 3.1

AThe standard is the rock -bottom for questions on MPI

Mot a formal specification , but (quite) precise (a lot of effort
has been investede)

£ except where it is deliberately imprecise (  progress rules :
when exactly message transfers happen)

Muite readable (recommended, better than many other books)
MMaintained by the MPI Forum: an open gathering for interested
parties, regular meetings 4 -6 times a year (MPI is not an ISO,
ANSI or | EEE sfitemjndar d, 1t os

MPI 3.1: June 4 1", 2015, see
www.mpkforum.org/docs/mpi -3.1/mpi31-report.pdf

Most MPI implementations implement (most of)
MPI 3.1 (yearly status at SC and other events)
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http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

aMP
di f

| I s designed not to make
ficult t hiGnogp EupPVAAIPIIR004 0

MPI is a large standard

AVIPI 3.1 around 416 C functions
AThere is a ( good) reason for most

BAbut it is po svath obnlyé furictonsdirot, wi t h

finalize, size, rank, send, recv) plus a few more
AConcepts and functionality are expressive and powerful and
work well together

Conjecture (tested at EuroPVM/MPI 2002):

For any MPI feature there will be at least one (significant) user

depending essentially on exactly this feature

Parallel

Computing
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As MPI too large after all?
As MPI scalable (specification and implementations)?

[PavanBalaji, Darius Buntinas, David Goodell, William Gropp, Torsten

Hoefler , Sameer Kumar, Ewing L. Lusk, Rajeev Thakur, Jesper

Larsson Traff:MPl on millions of Cores. Parallel Processing Letters

21(1): 45-60 (2011)]

MPI has scaled to >1,000,000 cores!

ASupport for fault -tolerance (some argue that the MPI
specification is fault -tolerant enough, and that fault -tolerance
IS an implementation issue; some think differently, and FT has
been debated for 10 years in the MPI Forum)

[William Gropp, Ewing L. Lusk: Fault Tolerance in Message Passing
Interface Programs. [JHPCA 18(3): 363 -372(2004)]

fOne-sided communication

paraller VSC School, January 13",2016 ©Jesper Larsson Traff Mn




MPI for communication

MPIlis a communication interface that makes it possible to
exploit modern hardware (oops: GPU? FPGA? Accelerators?)
very efficiently (given a good implementation)

MPI is not a high-level interface for general purpose
(distributed) parallel programming. In particular, application
programmer (or library on top of MPI) must handle

Mata structure distribution
Aomain decomposition
A oad balancing

Jis

but MPI can help
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Example: first ( noop) MPI program

/1
#include < mpi.h > Q; The MPI header file

int main( int argc ,char* argv [])

{

int  rank, size:

MPI_Init (&argc,&argv ); <FirstMPIcaII: init the library

MPI_Comm_size ( MPI_COMM_WORLD,&sizég
MPI_Comm_rank( MPI_COMM_WORLD,&rank

MPI_Finalize
return O;

Para
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Compile with mpicc, run with  mpirun/ mpiexeceée

#include < mpi.h >

int main( int argc ,char* argv [])

{
int  rank, size;

_ _ mpirun
MPI_Init (&argc,&argv ); starts
MPI_Comm_size ( MPI_COMM_WORLD,&siz} processes,
MPI_Comm_rank( MP|_COMM_WORLD,&rank arter

MPI_Init ()
|| é they are

MPI
MPI_Finalize  (); processes

return O;

}
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APl header file mpi.h :defines MPI constants, all function
prototypes

Ao MPI calls possible before  MPI_Init (); no MPI calls possible
after MPI_Finalize (); MPI cannot be restarted

AVPI_Init (): initializes internal data structures

AVIPI_Finalize (): cleans up internal data structures, but  does not
free application created MPI objects

AMPI_Init () and MPI_Finalize () are collective , all started
processes must call

Two exceptions :

MP_lInitialized (int *flag) For layered libraries
MPI_Finalized (int *flag)

Para
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A word on error handling

Al most al | MPI functions
means something wrong or unexpected happened

Good practice always to check the error code:

return

é
err=  MPI_Comm_size ( MPI_COMM_WORLD,&sizg
if (err'=MP|_SUCCESS) {

// do something

é

}
err=  MPI_Comm_rank( MPI_COMM_WORLD,&rank

a

Most often, this is not doneé (er

Parallel

Computing
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Depending on the MPI library implementation, it is sometimes
possible to do something sensible if errors occur, see standard
on error handlers

Note:
dext that states that errors wi// be handled, should be read as
maybe handledo , MP Bectbn 8.3, p. 340

Para
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First MPI communicator, first MPI operations

#include < mpi.h >

int main( int argc , char* gV [])

{

int  rank, size:

MPI_Init (&argc,&argv );

N

MPI_Comm_size ( MPI_COMM_WORLD,&sizég
MPI_Comm_rank( MPI_COMM_WORLD,&rank

Il é

MPI_Finalize ();
return O;

}
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After MPI_Init ():
MPI processes have a rank in MPI_COMM_WORLD

4 : )
MPI
_ Process

Communication
medium: concrete

MPI processes (mostly)
statically bound to
physical processor/core.
Do not migrate (across
node boundaries)

Para
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MPI_COMM_WORLD

Initial communicator created by  MPI_Init (), contains all started
processes

Communicator:

A-undamental MPI abstraction (object) representing an ordered
set (group) of processes that can communicate

AAIl communication operations are  wrt . a communicator: only
processes in the same communicator can communicate

A\ communicator has a size: the number of processes

A ach process in communicator uniquely identified by a  rank,
0OOrank<size in communicator
Mrocesses can belong to many communicators
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Communicators are the fundamental mechanism for

encapsulation and library building
P connmun'H ﬂ on

LIB:
MPI Irecv ( écomm);

MPI_Commcom

é
MPI_Isend (
e [/ |

LIB call ( éco

paraller VSC School, January 13",2016 ©Jesper Larsson Traff mn
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Communicators are the fundamental mechanism for

encapsulation and library building

MPI_Commcomm libcomm ;

/l initialize LIB

MPI_Comm_dug comm,&libcomm );
e

MPI_Isend ( € comn);
e // |l ots of MPI

LIB_call ( élibcomm );

C

Communication between
the two different
communicators not
possible

oOmmun c on

MPI_Comm_dugMPI

Commoldcomm, MPI_Comm * newcomn)

Para
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MPI_Comm_dugMPI Commcomm MPI_Comm * newcomn)

IS a blocking, collective operation : must be called by all
processes in comm, upon return, new communicator has been

created

Communicators are global, distributed objects, can only be
manipulated by collective operations

AMPI_Comm_dup()

API 3.1: MPI_Comm_dup_with_info (), MPl_Comm_idup()
AVP1_Comm_split ()

AVPI 3.0 : MP1_Comm_split_type ()

AVIPI_Comm_create ()

API 3.1: MPI_Comm_create_group ()

Many other operations implicitly create new communicators




MPI_Comm_free ( MPI_Comm* comn)

Collective operation for freeing a communicator, call returns
MPI_COMM_NULL if successful

Good practice always to free created MPI objects after use

Observations :

ANew communicators can be created out of old ones. Processes
can only be removed, not added (dynamic process management is
not treated here)

ACommunicators never change

KOperations on communicators are all collective
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Principle 4

MPI objects (communicators, groups, windows, datatypes ,
reqguests, operators, €) are opagqgu

Atis (mostly) not possible to look into the MPI objects ( partial
exception : MPI1_Status ), objects are manipulated through
operations (local and collective)

ANew objects can be created out of old ones

Arhere are NULL objects (invalid object, returned when objects
Is freed) for most MPI objects
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Collective semantic rules

A\ collective operation ( MPI_Comm_dup( é&omm),
MPI Bcast ( &éomm) , €) must be called by
communicator (collective over comm, or group)

ACorrectness: if some process in communicator calls collective
operation A, then all other processes (in this communicator)
must also call A, and no other collective operation (on
communicator) inbetween

KOperation is blocking if operation is (locally) completed upon
return: communicator has been created, messages sent, buffers
can be reusedeée

MOperation has non-local completion semantics , if completion
depends on action by other processes

Para
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Process i:

MPI_Comm_dug comm,&newcomny;
MPI_Bcast ( é comn);

ess |
" Bcast (€ gomnm);
|_Comm_dug comm,&newcomnj,

IS erroneous: Processes do not call collectives on commin the
same order

What happens?

Aviay deadlock (likely)
Ay crash (also possible)
May owor k6 (dsvithnisastionsesidequences later

paraller VSC School, January 13", 2016 ©Jesper Larsson Traff mn
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Process i:

MPI_Comm_dug comm,&newcomny;
MPI_Bcast ( é comn);

ess |
" Bcast ( é gomm);
|_Comm_dug comm,&newcomnj,

IS erroneous: Processes do not call collectives on commin the
same order

Correctness tools can help, check your local MPI installation

[Jesper Larsson Traff , Joachim Worringen: Verifying Collective MPI
Calls. PVYM/MPI1 2004: 18 -27]

[Christopher Falzone, Anthony Chan, Ewing L. Lusk, William Gropp: A
Portable Method for Finding User Errors in the Usage of MPI

Collective Operations. IJHPCA 21(2): 155 -165 (2007)]
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Process i:

MPI_Bcast ( é comn);
MPI_Comm_dug comm,&newcomny;

Para

Computing

Process j:

MPI_Bcast ( € comn);

MPI_Comm_dug comm,&newcomn);

IS correct : Processes now call collectives on comm in the same

order
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Local representations of MP| processes: groups

MPI_Comm_group( MPI_Commcomm MPI_Group *group)

Get the process group (rank ordered set of processes) out of
the communicator. Local -completion operations for creating new
groups out of old ones include

API_Group_size (), MPI_Group_rank ()
MPI1_Group_translate _ranks ()
AVIPI_Group_compare ()

AVPI_Group_union (), MP1_Group_intersection (),
MPI1_Group_difference ()

AVIPI_Group_incl (), MPI_Group_excl ()
API_Group_range_incl (), MPI_Group_range_excl ()
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MPI_Comm_group( MPI_Commcomm MPI_Group *group)

MPI_Group_free ( MPI_Group *group)

Groups needed for one -sided communication (and communicator
creation)

As with communicators, only possible to restrict/reorder the
set of processes in group, not to add new processes

Para
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Example: 2d stencil computation

Solving Poisson Equation on the unit square [0,1]x[0,1]

y2u(x,y )/ uyxz + y2u(x,y)/ yy? = f(x,y)

u(x,y) = g(x,y) on the boundary

boils down to iterating
Uk, ] = Ya(UX[i+1,j]+ uk[i - 1,j]+ UuX[i,j+ 1]+ uK[i,j -1] ahf(i/ n,j/n)

on an nxn matrix (n large).
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Updates follow a regular 5 -point stencil pattern

Boundary
conditions

Typical
parallelization with
p (some square)
processes:

2d regular
decomposition
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nxn

paraller VSC School, January 13", 2016 ©Jesper Larsson Traff mn




nxn

n/ pxn/p

MPI process
assigned to each
n/p x n/p block,
updates locally on
block

Assume p divides
n, use regular
decomposition to
minimize surface
(communication)
to volume (work)

ratio
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Before next
iteration, each
MPI process
needs to
exchange
boundary
row/column with 4
neighboring
processes
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Problem 1: Identifying neighboring processes

Processes I n communicator ar-é& ord
need to find rank of neighboring processes in virtual mesh

Solution 1: by hand, chose row or column major order of
processes, do the calculationse

Solution 2: Use MPI

paraller VSC School, January 13",2016 ©Jesper Larsson Traff mn



Para

Computing

Process O Process 1 Process 2
coordinate coordinate coordinate
(0,0) 0,1) (0,2)
Process 3 Process 4 Process 5
coordinate coordinate coordinate
(1,0) (1,1) (1,2)
Process 6 Process 7 Process 8
coordinate coordinate coordinate
(2,0) (2,1) (2,2)
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topology:

MPI processes
organized by row
order numbering
Into d -dimensional
mesh/torus.

Support functions
for translating
between ranks
and coordinates




MPI_Cart create (MPI Commcomm int ndims,
const int dims[], const int  periods],
int reorder, MPI_Comm* cartcomm )

Creates new communicator, where processes have been
organized into mesh (periods[ 1]=0) or torus (periods[ i]=1) of
ndims dimesions; dimension | has size dimsJ ]

@._"msidims[i] O cemm) e (

If there are too many processesin  comm, some processes will
not be in Cartesian communicator, cartcomm=MPI_COMM_NULL

Para
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Application decides on best dimension sizes (often close to
squareroot o f p , but dependseée), before
MPI_Cart_create ()

MPI provides some helper functionality to suggest a good
factorization of p (nodes) i idims) factors

MPI_Dims_create (int ndims , int dims[])

Beware: current implementations are not good at all (and not
really suited for modern, hierarchical systems)

[Jesper Larsson Traff , Felix Donatus Libbe: Specification Guideline
Violations by MPI_Dims_create . EuroMPI 2015: 19:1-19:2]

Para
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MPI_Cart_shift ( MPI_Comm cartcomm ,
int  direction, int  displacement,
int  *source, int  *destination)

Find ranks of neighbors in dimension direction

MPI_Cart rank ( MPI_Commcartcomm , int coords [],
int  *rank)

Translates d -dimensional coordinate vector into rank

MPI_Cart_coords (MPI_Commecartcomm , int rank, int
maxdims, int coords [])

Translates rank into d -dimensional coordinate

Para
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MPI_Commcomm cartcomm ;

MPI_Comm_size ( comm,&p);

r= sqgrt (p); c=p/r/lortry MPI_Dims_create
dim[0] = ¢; dim[1] =r;

period[0] = O; period[1] = 0;

reorder = 0;
MPI_Cart_create  (comm,2,dim,period,reorder,&newcomm);

Int r, |, u, d;//the ranks of the 4 neighbors
MPI_Cart_shift ~ (newcomm,0, 1,&r,&l);
MPI_Cart_shift  (newcomm,1, 1,&u,&d);

Topology is a (non-periodic) mesh, neighbors on border are
MPI_PROC NULL (special rank that can be used in point -to-
point communication to sometimes avoid handling special cases)

VSC School, January 13,2016 ©Jesper Larsson Traff Mn



MPI_Commcomm cartcomm ;

MPI_Comm_size ( comm,&p);

r= sqgrt (p); c=p/r/lortry MPI_Dims_create
dim[0] = ¢; dim[1] =r;

period[0] = O; period[1] = 0;

reorder = O;
MPI_(/\create (comm,2,dim,period,reorder,&newcomm);

Int r,| |, d;//the ranks of the 4 neighbors
MPI_C{ [shift  (newcomm,0, 1,&r,&l);
MPI_C{ [shift  (newcomm,1, 1,&u,&d);

What is reorder? What if reorder = 1; ?

Para
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Virtual topologies

A virtual process topology describes a pattern of most likely or
most significant communication between MPI processes:

ACartesian: MPI processes likely to communicate along the
dimensions of d -dimensional mesh/torus
ADistributed) Graph: pattern described as a directed graph

reorder=1

MPI may attempt to reorder processes in new communicator,
such that neighbors in virtual topology are close in physical
communication network

Para
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Communicator with some mapping of ranks to physical
processors/cores

Reorder=1 >

Para
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émay be mapped to match physical

Physical 2d, 3d, 5d
torus (was: BlueGene
Cray, etc.; is: Fujitsu K -
Computer)

Does it work? Do MPI
libraries reorder virtual
topologies?

Rarely, but t

1. Graph embedding is an NP-hard optimization problem
2. Not obvious what the objectives really are

r



Data redistribution may be necessary:

A-or each rank i in old comm, find out where i isin cartcomm
ASend data (from old i to new i in either of communicator)
AVIP1 does not do data redistribution , user responsibility

But MPI can help:

paraller VSC School, January 13",2016 ©Jesper Larsson Traff Mn
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assert( cartcomm !=MPI_COMM_NULL);

int torank , fromrank ;//to be computed
int rank, cartrank ;

MPI_Group group, cartgroup ;
MPI_Comm_group( comm,&group );
MP1_Comm_group( cartcomm,&cartgroup );

I/ where has rank been mapped to?

MPI1_Comm_rank( comm,&rank ); // rank in old comm

MPI_Group_translate rank (cartcomm,1,&rank,comm,
&torank );

/[ torank may be MPI_UNDEFINED

I if cartcomm smaller than comm

MPI_Comm_rank( cartcomm,&cartrank  );
MPI_Group_translate ranks (cartcomm,1,&cartrank,comm,
&fromrank );
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MPI_Group_translate_ranks ( MP1_Group groupl,

int n, const int  ranks1[],
MPI_Group group 2,
int  ranks2[])

Translate list of ranks of processes in groupl into ranks in
group2
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Virtual topologies

A communicator with a virtual topology is still a fully general
MPI communicator

Aull processes can communicate, point -to -point, collective, one -
sided

ACommunicator can be used to create further, new
communicators

Virtual topology does not forbid communication (but certain
communication may be preferred, more efficient)
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Query functionality (for library building)

MPI_Topo _test ( MPI_Commcomm int *topotype )

The returned topotype can be

AVPI_CART: The communicator is Cartesian

AVPI_GRAPH: The communicator is a (non -scalable) graph
AVIPI_DIST GRAPH: The communicator is a distributed graph
AVIPI_UNDEFINED: The communicator has no virtual topology

The topotype is (implementation wise) stored as an attribute of
the communicator:
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Additional query functionality (similar for distributed graphs)

MPI_Cartdim_get ( MPI_Commecartcomm , int *ndims)

MPI_Cart get ( MPI_Comm cartcomm |,
int  maxdims,
int  dimsf], int  periods|], int coords [])

maxdims is the size of the arrays in the call, only this much
Information is returned

Para
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User defined attributes

For library building

Possible to associate own, user -defined attributes with MPI
objects like communicators, datatypes , and windows

MPI mechanism is somewhat awkward (generate key, write copy
and deletion functions), check the standard

Para
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Solution 1: Point -to - point communication

lterate:

MPI_Send( é, u ,camp;
MPI_Send ( m);
MPI_Send(
MPI_Send

MPI_Recv \ stat );
MPI_Recv ( &stat );
MPI_Recv ( '
MPI_Recv (
// update
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MPI_Send (void * buf, int count, MPI Datatype type,
int  destination, int tag, MPI_Commcomm )

Mlocking send: when call returns, data have left buffer, buf can
be reused

Mon-local completion semantics : completion may depend on
action by receiving process

AReturn from call does not imply anything about action by
receiving process

MPI library implementation practice (for high performance):
AShort messages are internally buffered

MAedium messages handled by special protocol

A ong messages pipelined, rendezvous protocol

Para
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MPI library implementation practice (for high performance):
AShort messages are internally buffered

MAedium messages handled by special protocol

A ong messages pipelined, rendezvous protocol

This practice is NOT prescribed by MPI standard, how it is
done is implementation dependent, and differ among libraries
and systems

MPI_Send( é comn); MPI_Send( é comn);
MPI_Recv( écomn); MPI_Recv( écomn);

Exchange may work, but is implementation dependent. Unsafe!

Para
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Definition : MPI program is unsafe if termination depends on
whether messages are internally buffered.

Aan unsafe program may or may not deadlock

Mehavior is dependent on MPI library implementation  (how large
Internal buffers are allowed) and perhaps on concrete context

(how may processes, which communication)

AJnsafe programs are not portable

Para
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Remedy: MPI_Sendrecv ()

MPI_Sendrecv ( €, u, é, commg ,
MPI_Sendrecv ( ¢, d, é, commg ,
MPI _Sendrecv ( é, | , é, commg ,
MPI_Sendrecv ( é, r , é , dommg ,
/[ update

o-0-0

Para
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Remedy: Non-blocking communication

MPI_Request request[8];
MPI_Status  statusesi8];

MPI_Isend ( €, u ,camm,&request [0]);
MPI Isend ( €, d ,camm,&request [1]);
MPI Isend ( €, | ,camm,&request [2]);
MPI Isend ( €, r ,canmm,&request [3]);
MPI _Irecv ( €, u ,cdanm,&request [4]);
MPI _Irecv ( e, d ,canm,&request [5]);
MPI Irecv ( e, | ,cadnmm,&request [6]);
MPI _Irecv ( e, r ,canmm,&request [7]);

MPI1_Waitall ~ (8,request,statuses);
/[ update

Para
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Non-blocking communication

Semantic advantages : makes it easier to avoid deadlocks, and
make programs safe. Non-blocking collectives with MP1 3.0

Performance advantage (?): makes it possible to overlap
communication with computation

MPI_Isend (void* buf, int count, MPI Datatype type,
int destination, int tag, MPI_Commcomm
MPI_Request *request)

Non-blocking send: local completion semantics , call returns
Immediately, but buffer is still in use

Para
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MPI_Isend (void* buf, int count, MPI Datatype type,
int  destination, int tag, MPI_Commcomm
MPI_Request *request)

Non-blocking send: local completion semantics , call returns
| mmediately, but buffer is still in use

Effectas MPI_Send () achieved by MPI_Wait () call, buffer
free, but no guarantees about what has happened at receiving
side

AVPI_(I) Ssend(): Synchronous send, returns when receiver has

started reception
API_ () Bsend(): Buffered send, local completion semantics,
data buffered in attached buffer in user space

Para
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Para

Computing

MPI_Request
MPI_Status

MPI_Isend (
MPI_Isend (
MPI _Isend (
MPI_Isend (
MPI_Irecv (
MPI_Irecv (
MPI_Irecv (
MPI_lIrecv (
/[ update non
MPI_Waitall

request[8];
statuses|8];
e, camm,&request
camm,&request
camm,&request
camm,&request

(O NNONNON
- T O C

,camm,&request
,camm,&request
,camm,&request
, r canm,&request
- border region
(8,request,statuses);

D DO D D
- Q C

/[ update border

[0]);
[1]);
[2]);
[3]);

[4]);
[5]);
[6]);
[7]);

Communication has
beéen initiated

< Do computation here
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n/p x n/p 1. Initiate

communication on
boundary
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n/p x n/p 1. Initiate

communication on
boundary

2. Compute on
Internal elements,
as long as there
are no
dependencies on
boundary
elements
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n/p x n/p 1. Initiate
communication on
boundary

2. Compute on
internal elements,
as long as there
are no
dependencies on
boundary
elements

WIEN
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n/p x n/p 1. Initiate
communication on
boundary

2. Compute on
internal elements,
as long as there
are no
dependencies on
boundary
elements

3. Complete
communication,
complete
computation on
boundary
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On progress of communication

MPI_Isend (); Large msg_>

Message Passing conceptual Local
time

MPI_Recv ();

MPI_Wait ();

Para
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MPI_Isend (); Header >

— MPI_Recv ();
Part 1 >

Local
< Ackio send

Message Passing more realistic

Part n >
MPI_Wait ();

Para
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MPI_Isend (); Header

)

MPI_Recv ();

Local
time

MPI_Wait ():
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MPI_Isend (); Header

)

MPI_Recv ();

Local
time

MPI_Wait ():
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MPI_Isend (); Header

)

MPI_Recv ();

Local
time

MPI_Wait ():
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Application enforced progress: difficult to tune, may be non -
portable, but| sometimes (often?) necessary

MPI_Isend (); Header >

MPI_Recv ();

Local
time

est ();

MPI_Wait ():

CCCCCCCC



Progress

MPI libraries often use mixed strategies :

1. Hardware, whenever possible ( @fload to NI C0)
2. MPI calls to make progress

3. Sometimes thread support ( @ogress thread 0 )

Note :
Thread support sometimes considered too expensive for HPC,
sometimes not possible (because of simple OS)

Good practice : frequent MPI calls when using non-blocking
operations ; but difficult to tune, possibly not portable

MPI standard is intentionally loose on progress to allow
different implementations

Para
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Problem 2: Where are the data?

Each process
1. needsdatatorow -1 androw n/p from up and down

processes
2. contributes data in row 0 and row n/p -1 to up and down
processes
3. needs data to column -1 and column n/p from left and right
processes

4. contributes data in column 0 and column n/p -1 to left and
right processes

Region of overlap is called halo, can be deeper than 1
row/column (and save communication at the cost of space)

Para
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Row-1 Column n/p
Row O \

Halo: one extra column per process

Para
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Communication calls take buffer arguments and communicate
serially from/to these buffers

Communication buffers always have a datatype and an element
count, for example

MPI_Bcast ( void* buffer, int count, MPI Datatype type ,
int root, MPI_Commcommn)

Datatypes are MPI objects that (can) correspond to the basic
datatypes in C (and FORTRAN)

Para
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Basic MPI_Datatype C type

MPI_CHAR char

MPI_SHORT (signed) short ( int )
MPI_INT int

MPI_LONG (signed) long( int )
MPI_LONG_LONG signed long long int
MPI_SIGNED_ CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED LONG _LONG unsigned long long int
MPI_C_BOOL _Bool

MPI_WCHAR wchar _t

Para
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Basic MPI_Datatype C type

MPI_INTS_T int8__t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64 T int64 _t
MPI_INTS_T uints__t
MPI_INT16_T uint16_t
MPI_INT32_T uint32_t
MPI_INT64 T uint64._t

Para
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Basic MPI_Datatype C type

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_C_COMPLEX float _Complex
MPI_C_DOUBLE_COMPLEX double _Complex

MPI_LONG_DOUBLE_COMPLEX long double _Complex

Para
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Special datatypes

MPI_BYTE Uninterpreted bytes
MPI_PACKED Special, packed data (*)

(*) generated by MPI_Pack/ MPI_Unpack only

MPI_AINT MPI_Aint INTEGER
(KIND=MPI_ADDRESS_KIND)
MPI_OFFSET MPI|_Offset INTEGER

(KIND=MPI_OFFSET_KIND)

MPI_Aint : address sized int

Para
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Communication operations transfer a serialized stream of
elements of basic datatype from one process to another

Stream of basic elements is called a type signature

Example: count=7 of MPI_INT describes the signature
dnt,int,int, int,int,int,int >

Correctness rule for any type of communication: the signature
of the sent elements must be identical(*) to the signature of
the elements to be received

(*) for point -to-point and one-sided: sent signature must be a
prefix of expected to be received signature

Para
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Communication operations transfer a serialized stream of
elements of basic datatype from one process to another

Stream of basic elements is called a type signature

Example: count=7 of MPI_INT describes the signature
dnt,int,int, int,int,int,int >

Correctness rule for any type of communication: the signature
of the sent elements must be identical(*) to the signature of
the elements to be received
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Rank i:

int N = 1000;

int  a[N];

MPI_Send (a,N,MPI_INT,},777,MPI_COMM_WORLD);

Rank j:

MPI_Status  status;

int N =1000; // or larger

int  b[N];

MPI_Recv ( b,N,MPI_INT,i,MPI_COMM_WORLD,&status );

Para
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Rank i:

int N = 1000;

int  a[N];

MPI_Send (a,N,MPI_INT,},777,MPI_COMM_WORLD);

Rank j:
MPI_Status  status;
int N =1000; // or larger

double b[N];
MPI_Recv ( b,N,MPI_DOUBLE,i,MPI_COMM_WORLD,&status );
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Rank i:

int N = 1000;

int  a[N];

MPI_Send (a,N,MPI_INT,},777,MPI _COMM_WORLD);

Rank j:

MPI_Status  status;

int N =1000; // or larger

int  b[N]J;

MPI_Recv ( b,N *sizeof (int ), MPI _BYTE,i,MPI_COMM_WORLD
&status);

Para
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Principle 5:

All MPI communication is typed, and consists of sequences of
elements of basic types. Types must be respected

Basic datatypes have underlying semantics, and keeping
elements typed (not streams of uninterpreted bytes) makes it
possible to communicate across heterogeneous systems , e.g.
different word size, different endianness, &

Para
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Stencil example: row and column data

C stores 2 -dimensional arrays in row major order, so rows form
consecutive sequences of elements in memory. Communication
can be done as seguences of basic elements, e.g., MPI_DOUBLE

Column elements are non-consecutive, but regularly strided in
process memory. How can this be handled?

Solution 0 : Element by element

Solution 1: by hand, pack column elements into consecutive,
Intermediate buffer, send as sequence of MPI_DOUBLE

Solution 2;: Use MPI to do the work

Para
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Element by element:

for( 1=0; i<nlp; I

MPI_Send (&matrix[ MPI DcnB,L E, €|

}

Packing by hand:

Arakes time

Arakes space
A-or complex, irregular data layouts, writing efficient packing

routines is non -trivial (and may not be portable: cache -system)
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Principle 6:

Message-passing is better for bulk transfers , exchange as large
messages as possible

Communication operations have latency/overhead independent
of message size. Overhead can be significant:

Adardware

fSoftware

Adlgorithmic (for collective operations: lower bounds on number

of required communication rounds)

Overhead/latency captured in communication cost models
(linear, LogGR  ¢é)

Overheads can be amortized by large messages that can exploit
full communication bandwidth
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Derived (user -defined) datatypes

General mechanism for

Mescribing arbitrarily complex, non  -consecutive and
heterogeneous (different basic  datatypes ) layouts of data in
memory

fSerializing access to structured data in communication
operations: from type map (sequence of basic datatypes with
and addresses) to type signature

Acixing units of communication

ACan be used with all communication models: point -to - point, one -
sided, collective; essential for MPI I/O specification

Para
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Applications with non -contiguous data layouts (sub -matrices,
stencils, i1 rregular structures,

:- - MPI_Bcast (buf,newtype , é ] ;

feither explicitly pack/y pack data at communication operations,

or N

-:- MPI_Bcast (buf,MPI_BYTE , é ] :

Alescribe data layout as derived datatype , and delegate any
necessary packing/unpacking to MPI library

MPI_Type_create é ( énewiype);
MPI_Type_commit (&newtype);

Para
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Derived datatype advantages

Descriptive :

AHHigher |l evel d descri ptnineadtoof st
bother with tediousé&specialized pack/unpack routines

Al handling of structured data delegated to MPI library

Performance :

A=fficient, pipelined, once -and-for -all pack/unpack functionality,
saves space for intermediate buffers in user space
ACommunication operations with internal buffering genuinely
benefit , datatype engine copies directly into internal buffers
ACommunication system with non -contiguous (strided ) operations
can be exploited

Potential for MPI aware compil ers

Para
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Derived datatype mechanism

Set of increasingly general/complex/confusing constructors

that describe where the basic elements are (displacements),
what they are (basic datatype ), and in what order they shall be
accessed

MPI_Type_commit ( MPI_Datatype *type)

Commit needed to make new datatype usable in communication;
handle for MPI library to perform optimizations

MPI_Type_free ( MPI _Datatype *type)

Good practice to free datatypes when no longer used; datatypes
can take up some space
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- Basetype: basic or user-defined

contiguous [0 ] 2[2]3]4]

vecor  [ofafz]  [s]afs] [e]7]s]

ndexed  [2fafals]  [ofz] [efsfw] [7] [6]
st (OIS [sfe] [elofe] [7]

Sequence numbers: order in which basetype are serialized
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Basetype: basic or derived

<>

True extent : difference between first and last element (byte)

in datatype, of oot printo

Size: number of actual elements (Bytes) occupied by datatype

l.ower bound
Extent = 16 (assuming all is Bytes), Size = 11

l
H

The extent ( not true extent) is used put typed elements after

each other
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MPI_Type_size ( MPI_Datatype type, int *size)

MPI_Type get extent ( MPI_Datatype type,
MPI_Aint *lb, MPI_Aint *extent)

Careful : extentand Ib are MPI_Aint , bytes is int

Extent is a unit for putting elements after each other, and need
not be the actual footprint of the datatype . The footprint is
the true extent

MPI_Type_get_true_extent ( MPI_Datatype type,
MPI_Aint  *Ib,
MPI_Aint  *extent)

Para
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MPI_Type_contiguous (int count, MPI_Datatype oldtype ,
MPI_Datatype * newtype )

Basetype: basic or derived

Space for

0(1|2|3|4)|5 i
description: 1 word

extent (for repetition )

Para
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MPI_Type_vector (int count,
int blocklength , int stride,

MPI_Datatype oldtype
MPI_Datatype *newtype )

Basetype: basic or derived

extent
stride (in units of basetype)

Space for description: 3 words
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Column of n/p x n/p matrix

MPI_Datatype column ;

int

nn =n/p;

MPI_Type_vector (nn,1,nn,MPlI_DOUBLE,

&column );

MPI_Type_commit (& column );

MPI Isend ( &m[ O] [ O] , 1, c odomnpn ,
MPI Isend (&m[0][nn -1] , 1, col umn, 1
comn);
e ' e - é
| |

row O, nn columns

Para

Computing

row 1, nn columns

MPI_Type free (& column);
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Principle 7:

Use MPI datatypes for transferring static, complex data
layouts whenever possible and convenient

ACommunication using adatatype should be no slower (faster!)
than first copying (manually, or with  MPI1_Pack/ MPI_Unpack)
Into intermediate buffer and then sending contiguous
(MPI_PACKED) buffer

A\pply principle with some care:

Merformance of MPI derived datatypes was bad in early MP]
libraries

Aerformance has improved significantly , but there is still work

to do
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Principle 7:

Use MPI datatypes for transferring static, complex data
layouts whenever possible and convenient

Golden MPI rule

AJse derived datatypes for conciseness and performance
whereever possible

AComplainto MPI library implementer (and MPI community) if
performance anomalies are discovered
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Data type performance expectation:

MPI_ Send( sendbuf , 1, cojmmp;e, €,

should be no slower (and hopefully faster) than

int  position = 0;
MPI_Pack (sendbuf,1,type,packbuf,packsize,position,
comm);
MPlI_Send( packbuf , 1, MPI céh)CKED, €&,

Otherwise, datatype mechanism would not seem to make any
sense (performance wise), user could do better with
MPI_Pack()/ MP1_Unpack ()

Para
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Experiment:

Send and receive (ping -pong benchmark) some amount of data as
vector with fixed stride and varying blocklength ; compare to
MPI1_Pack()/ MPI_Unpack () and intermediate, packed buffer;
compare to raw performance with consecutive buffer

Which is better?

Stride = 100000 elements (MPI_DOUBLE)

o VSC School, January 13,2016 ®©Jesper Larsson Traff

Para
mputi



Block length: 10000 elements

100-
)
E
£
= 17

Para

Computing

1e+05 16+07

Transmitted elements
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mvapich2-1.9 on
small
Infiniband /AMD

cluster

datatype
Communication RTT
MPI pack/unpack
MPI Vector




Block length: 10 elements mvapich2-1.9 on

small
nfinilband /AMD
10.0- cluster
o datatype
é Communication RTT
& 4= MPI pack/unpack
E MPI Vector
0.1- .

1e+02 1e+04 1e+06
Transmitted elements
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Block length: 10000 elements

100-
‘0’
E
£
= 1

Para

Computing

1e+05 16+07

Transmitted elements
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Infiniband /AMD
cluster

datatype
Communication RTT
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Block length: 10 elements

NECmpil.3.1 on

small

10.0-

Time [ms]

Infiniband /AMD
cluster

1e+02 1e+04
Transmitted elements
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datatype
Communication RTT

MPI pack/unpack
MPI Vector




OpenMPI 1.8.4
on small
Infiniband /AMD
cluster

Para
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