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Part A - HardwarePart A - Hardware

• Modern Processors
• Stored Program Computer Architecture
• Memory Hierarchies:

Memory Gap, Caches, Prefetch
• Pipelining
• Multi-Core Processors
• Multi-Threaded Processors

• Parallel Computers
• Basics
• Shared-Memory Computers:

Cache Coherence, UMA, ccNUMA
• Distributed-Memory Computers
• Hierarchical (Hybrid) Systems
• Networks
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Stored Program Computer ArchitectureStored Program Computer Architecture
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• Program feeds control unit
• Stored in memory together with data
• Data required by arithmetic unit
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Stored Program Computer ArchitectureStored Program Computer Architecture

Two Big Issues
• Memory bottleneck

• Instructions and data must be fed to control and
arithmetic unit

• Speed of memory interface poses limitation to
compute performance

• Commonly known as von Neumann bottleneck
• Inherently sequential architecture

• A single instruction with a single/group of
operands from memory

• Single instruction single data (SISD)

However ..
• No widespread alternative within reach
• So, we better make the best out of it
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Memory HierarchiesMemory Hierarchies
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Memory Hierarchies - Memory GapMemory Hierarchies - Memory Gap
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Memory Hierarchies - CachesMemory Hierarchies - Caches

• Low-capacity, high-speed memory
• Integrated on CPU-die
• Replicate data lines in main memory
• Required to buffer slow main memory access
• GFlops/s per core vs memory bandwidth GBytes/s
• Insufficient to continuously feed arithmetic units
• Additional problem: Memory latency (∼100 cycles)
• Caches can alleviate effects of memory gap
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Memory Hierarchies - CachesMemory Hierarchies - Caches

• Usually two-three cache levels: L1-L3
• L1 is normally split into two parts

• L1I: for instructions
• L1D: for data

• Outer cache levels are typically unified
• Data load request into register:

• Is available in cache: cache hit
• Is not available in cache: cache miss

• Cache miss: data fetch from outer cache levels or in
worst case from main memory

• No cache space available: algorithm evicts old data
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Memory Hierarchies - CachesMemory Hierarchies - Caches
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Memory Hierarchies - CachesMemory Hierarchies - Caches
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• Shared caches in a multi-core setting
• Intel Nehalem
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Memory Hierarchies - PrefetchMemory Hierarchies - Prefetch

• Provide caches with data ahead of time
• Idea is to hide latency
• Software prefetching by compilers
• Interleaving special instructions with software pipelined

instruction stream
• ”Touch” cache lines in advance
• Requires asynchroneous memory operations
• Hardware prefetcher identifies patterns to read ahead
• Hardware and software prefetchers are used in today’s

processors
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Memory Hierarchies - PrefetchMemory Hierarchies - Prefetch

• Both techniques can only do so much
• Significant burden on memory subsystem
• Support of certain number of outstanding prefetch

operations (i.e. pending prefetch requests)
• One prefetch for each cache line transfer
• Application with many operations on the cache line will

require less
• Application with heavy BW demand can overstretch

prefetching
• Tip: provide long continuous data streams
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Memory Hierarchies - PrefetchMemory Hierarchies - Prefetch
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PipeliningPipelining

• Pipelining is similar to an assembly line
• ”Workers” are specialized on a single task
• Forward object to next worker
• Goal is to optimize the work among workers
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PipeliningPipelining

• Complex operations require more than one cycle
• Apply pipeline complex: ”fetch-decode-execute”
• Each stage can operate independently
• Idea: break down complex tasks into simple ones
• Allows for higher clock rate due to simple tasks
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PipeliningPipelining
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• Timeline for simplified floating-point multiplication
• Executes vector product: A(:)=B(:)*C(:)
• One result per cycle; four-cycle wind-up phase
• Modern pipeline lengths between 10 and 35
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PipeliningPipelining

Issues
• Inefficient if short and tight loops are used
• Operations with long latencies (e.g. square root)
• Pipeline bubble when low degree of pipelining
• Compiler aims to optimally utilize pipeline
• Stalls if load operation does not deliver data on

time for arithmetic operation
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Multi-Core ProcessorsMulti-Core Processors
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Multi-Core ProcessorsMulti-Core Processors
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25

Multi-Core ProcessorsMulti-Core Processors
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• Intel Ivy Bridge EP, Configurations
• @12c: Note the additional bus, memory controller,

and splitted L3 cache
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Multi-Threaded ProcessorsMulti-Threaded Processors

• All modern processors are heavily pipelined
• However, often the pipelines cannot be efficiently used
• Make use of additional cores on modern processors
• Threading capabilities

• Simultaneous Multithreading (SMT)
• Hyperthreading (Intel’s version of SMT)
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Multi-Threaded ProcessorsMulti-Threaded Processors

• Main idea: increase number of independent instructions
in pipeline

• Architectural state is present multiple times
(i.e. registers, stack and instruction pointers)

• Execution units are not multiplied
• CPU appears to be composed of several cores (i.e.

logical cores)
• Potential to fill bubbles in pipelines as threads share

execution resources
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Multi-Threaded ProcessorsMulti-Threaded Processors

Memory L2 cache

L1D cache

L1I cache
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Registers

Control

• Pipelined microprocessor without SMT
• White blocks in pipelines denote bubbles
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Multi-Threaded ProcessorsMulti-Threaded Processors
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• Pipelined microprocessor with two-way SMT
• Two threads share caches and pipelines but retain

respective architectural state
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BasicsBasics

• Parallel computing solves a problem in cooperative way
• Uses several compute elements
• All modern (supercomputer) architectures depend on

parallelism
• Also: check your phone - Nexus 6P (8 cores) ..
• Parallel computing importance will continue to rise
• Dominating concepts are:

• SIMD: Single Instruction, Multiple Data (e.g. GPUs)
• MIMD: Multiple Instruction, Multiple Data (e.g. Parallel

computers)



32

Shared-Memory ComputersShared-Memory Computers

• System with number of CPUs
• Work on common, physical address space
• Transparent to the programmer, however:
• Uniform Memory Access (UMA)
• cache-coherent Nonuniform Memory Access (ccNUMA)
• Regardless: require cache coherence
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Shared-Memory Computers - Cache CoherenceShared-Memory Computers - Cache Coherence

• Cache coherence is required in all cache-based
multi-processor systems

• Copies of cache lines can reside in different caches
• Imagine: One cache line gets modified ..
• Cache coherence protocols ensure consistent view of

memory at all times
• Coherence traffic can hurt application performance if the

same cache line is frequently modified by different
processors (i.e. false sharing)

• Implemented in the hardware (CPU or chipsets)
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Shared-Memory Computers - Cache CoherenceShared-Memory Computers - Cache Coherence
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Shared-Memory Computers - UMAShared-Memory Computers - UMA

P

L1D
L2

P

L1D
L2

Chipset

Memory

Chipset

Memory

P

L1D
L2

P

L1D

P

L1D
L2

P

L1D

• Both are UMA!
• Latency and bandwidth same for processors/memory
• Aka symmetric multiprocessing (SMP)
• Limited scalability: memory bus contention
• E.g. typical single multi-core processor chips are UMA
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Shared-Memory Computers - ccNUMAShared-Memory Computers - ccNUMA
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• Memory is physically distributed but logically shared
• Better scalability: Small number of CPUs compete for

shared memory bus
• Physical layout similar to distributed-memory case
• Intel’s UltraPath (UPI)/Qickpath Interconnect (QPI)
• E.g. 2- to 4-socket HPC node setup (VSC-2/3 uses 2)
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Distributed-Memory ComputersDistributed-Memory Computers
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• No Remote Memory Access (NORMA)
• Today no system available like that anymore
• However, can be seen as programming model
• Communication over the network (e.g. MPI)
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Hierarchical (Hybrid) SystemsHierarchical (Hybrid) Systems
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• Large-scale parallel clusters (VSC-2/3)
• A mix of distributed- and shared-memory type
• Even more anisotropic than multi-core & ccNUMA
• Network an additional layer of communication
• Success due to price vs performance
• Might also contain accelerators/co-processors
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NetworksNetworks

• Networks connect individual compute components
• Primary importance to overall performance
• Bandwidth and latency are of importance
• However, latency effects affect most applications
• Large number of compute components:

Topology becomes important!
• Simple and cheap: Gigabit Ethernet networks

(∼ 110 MB/s, ∼ 40− 50µs)
• Professional clusters: Infiniband networks

(∼ 1000 MB/s, ∼ 4− 10µs)
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NetworksNetworks

• Buses
• Shared medium
• Used by one communicating device at a time
• E.g. PCI (1-30 GByte/s), CPU-memory (10-50 GByte/s)
• Issues: Blocking (bandwidth)

• Switched and fat-tree networks
• Subdivision of communicating devices into groups
• Fat-tree: fatter links for higher tiers, e.g. VSC-3
• Issues: Doesn’t scale well (cables, active components)

• Others: mesh networks, torus networks, hybrids
• Computing elements located at grid intersections
• No direct connections between non-neighbors
• Requires certain routing circuits to control flow
• E.g. Cray’s Gemini/Aries (1-50 GByte/s),

ccNUMA (40 GByte/s)
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Networks - Fat TreeNetworks - Fat Tree
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Networks - Fat TreeNetworks - Fat Tree

• VSC-3’s fat tree network structure

© Vienna Scientific Cluster / vsc.ac.at

http://vsc.ac.at
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SoftwareSoftware

• Shared-Memory Parallel Programming
• Data Locality

Locality of Access, Placement Pitfalls, C++ Issues
• OpenMP

Basics, Efficiency
• Alternatives

• Vectorization
• Intrinsics vs Pragmas
• Automatic Vectorization

• Distributed and Hybrid Parallel Programming
• Distributed Parallel Programming
• Hybrid Parallel Programming

Potential Benefits and Drawbacks
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Shared-Memory Parallel ProgrammingShared-Memory Parallel Programming

• Program consists of threads of control with
• Shared variables
• Private variables
• Thread communication via read/write shared data
• Threads coordinate by synchronizing on shared data

• Threads can be dynamically created and destroyed
• Other programming models:

• Distributed-memory
• Hybrid
• ..
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Shared-Memory Parallel ProgrammingShared-Memory Parallel Programming

Processes
• Independent execution units
• Own state and own address space
• Interaction with inter-process communication
• A process may contain several threads

Threads
• All threads within a process share address space
• Own state but global and heap data are shared
• Interaction via shared variables

State
• Instruction pointer
• Register file (one per thread)
• Stack pointer (one per thread)
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Data LocalityData Locality
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• Locality problem: Data in nonlocal memory
• Contention problem: Concurrent local&remote access
• Memory-bound code must use proper page placement
• Pinning must be used to ensure locality
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Data Locality - Locality of AccessData Locality - Locality of Access
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• ccNUMA system with four locality domains
• Zero, one, or two hops required
• Contention problem cannot be eliminated
• No interconnect turns ccNUMA into UMA
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Data Locality - Locality of AccessData Locality - Locality of Access

double precision, allocatable, dimension(:) :: A, B, C, D
allocate(A(N), B(N), C(N), D(N))
! initialization
do i=1,N
B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

enddo
...
do j=1,R
!$OMP PARALLEL DO
do i=1,N
A(i) = B(i) + C(i) * D(i)

enddo
!$OMP END PARALLEL DO
call dummy(A,B,C,D)

enddo

• Vector triad code in Fortran
• No first touch policy - scaling will be bad ..
• .. if data does not fit in the cache!
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Data Locality - Locality of AccessData Locality - Locality of Access

! initialization
!$OMP PARALLEL DO
do i=1,N
B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

enddo
!$OMP END PARALLEL DO

• Better: memory pages reside in respective domains
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Data Locality - Locality of AccessData Locality - Locality of Access

integer,parameter:: N=1000000
double precision :: A(N),B(N)

! executed on single LD
READ(1000) A
! contention problem
!$OMP PARALLEL DO
do i = 1, N

B(i) = func(A(i))
enddo
!$OMP END PARALLEL DO

→

integer,parameter:: N=1000000
double precision :: A(N),B(N)
!$OMP PARALLEL DO
do i=1,N
A(i) = 0.d0

enddo
!$OMP END PARALLEL DO
! A is mapped now
READ(1000) A
!$OMP PARALLEL DO
do i = 1, N
B(i) = func(A(i))

enddo
!$OMP END PARALLEL DO

• Serial is OK, but first first-touch in parallel!
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Data Locality - Locality of AccessData Locality - Locality of Access

• Proper first-touching not always possible
• Think of dynamically partitioned parallel loops:

Usually used in poorly load-balanced scenarios
• Successive parallel loops:

Threads should get always same partition
• Cannot avoid global variables?

Make local first-touched copies
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Data Locality - Placement PitfallsData Locality - Placement Pitfalls

• ccNUMA offers superior scalability for
memory-bound code

• UMA easier to handle and no locality handling
• However, ccNUMA is/will be the likely scenario
• Placement optimizations not always possible
• Dynamic loop scheduling
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Data Locality - Placement PitfallsData Locality - Placement Pitfalls

! initialization
!$OMP PARALLEL DO SCHEDULE(STATIC,512)
do i=1,N
A(i) = 0; B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)

enddo
!$OMP END PARALLEL DO
...
do j=1,R
!$OMP PARALLEL DO SCHEDULE(RUNTIME)
do i=1,N
A(i) = B(i) + C(i) * D(i)

enddo
!$OMP END PARALLEL DO
call dummy(A,B,C,D)

enddo

• Hope for statistically even distribution of access
• Vector triad to fathom impact of random access
• Round Robin static initialization
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Data Locality - Placement PitfallsData Locality - Placement Pitfalls
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• Operating systems reserve file I/O caches for reuse
• Might force nonlocal data placement
• FS buffer cache can be a remnant from other job
• Option: sweep memory - allocate all memory
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Data Locality - C++ IssuesData Locality - C++ Issues

• C and Fortran straightforward in handling data
locality

• C++’s object oriented features offers some problems
• Arrays of objects
• Standard Template Library
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Data Locality - C++ IssuesData Locality - C++ Issues

class D {
double d;
public:
D(double _d=0.0) throw() : d(_d) {}
∼D() throw() {}
inline D& operator=(double _d) throw() {d=_d; return *this;}
friend D operator+(const D&, const D&) throw();
friend D operator*(const D&, const D&) throw();
...

};

• Compare
double * array = new double(n); with
D * array = new D(n);

• Constructor initializes immediately
• Placement with locality domain which issued new

• Obvious option (don’t default initialize) not always
possible/desirable
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Data Locality - C++ IssuesData Locality - C++ Issues

void* D::operator new[](size_t n) {
char *p = new char[n];
// allocate
size_t i,j;
#pragma omp parallel for private(j) schedule(runtime)
for(i=0; i<n; i += sizeof(D))
for(j=0; j<sizeof(D); ++j)

p[i+j] = 0;
return p;

}

• Provide overload for new operator
• Manual parallel first touch
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Data Locality - C++ IssuesData Locality - C++ Issues

template <class T> class NUMA_Allocator {
...
// allocate raw memory including page placement
pointer allocate(size_type numObjects, const void *localityHint=0) {
size_type len = numObjects * sizeof(value_type);
char *p = static_cast<char*>(std::malloc(len));
if(!omp_in_parallel()) {
#pragma omp parallel for schedule(runtime) private(ofs)
for(size_type i=0; i<len; i+=sizeof(value_type)) {

for(size_type j=0; j<sizeof(value_type); ++j)
p[i+j]=0;

}
}
return static_cast<pointer>(m);

} ... };

• Default STL allocator is not NUMA-aware
• You can provide your own!
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OpenMPOpenMP

• POSIX threads not very convenient for HPC
• Majority is loop-centric ..
• OpenMP is a directive-based language
• Central entity is a thread
• Non-OpenMP compiler would simply ignore
• Each well-written OpenMP program is a serial program
• VSC-3 currently supports

OpenMP 3.1 (GNU GCC 4.8.2) and
OpenMP 4.0 (Intel Compilers 16.0.0)

#pragma omp parallel for
for(int i = 0; i < N; i++)

std::cout << i << std::endl;
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Fork

Join

Serial region

Parallel region

• Fork-join model
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• Parallel regions are indicated with parallel pragma

C/C++
#pragma omp parallel
{
// parallel region
do_work_package(omp_get_thread_num(), omp_get_num_threads());

}

Fortran
!$OMP PARALLEL
! parallel region
call do_work_package(omp_get_thread_num(),omp_get_num_threads())

!$OMP END PARALLEL
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• Controlling an application’s number of threads

Environment variable
$ export OMP_NUM_THREADS=4
$ ./a.out

Set during run time
omp_set_num_threads(4)



65

OpenMPOpenMP

Data scoping
• All variables before parallel region are accessible
• Explicitly control data scoping:

• private(...)
• shared(...)
• firstprivate(...)
• ...

• All variables within parallel region are private
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#include <omp.h>
main () {

int nthreads, tid;
/* Fork a team of threads with each thread having a

private tid variable */
#pragma omp parallel private(tid)
{
/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and terminate */
}
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Loop Parallelization and Scheduling
• Loop parallelization is most used mechanism
• Different scheduling techniques available

• schedule(type[, chunk])
• static
• dynamic
• guided

• collapse: nested loops can be collapsed into one large
iteration space

• nowait: threads do not wait at the end of the parallel
region

• ...
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#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main () {

int i, chunk;
float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel section */
}

• Can be merged into one scope
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Synchronization
• Sometimes this is not avoidable
• critical: only one thread executes the part
• atomic: faster but only available for few executions
• barrier: all threads will wait here for each other
• Should be avoided at all costs!



70

OpenMPOpenMP

Reductions
• Expression support is restricted
• C++: x++, ++x, x = x op expr, ..

double precision :: r,s
double precision, dimension(N) :: a

call RANDOM_SEED()
!$OMP PARALLEL DO PRIVATE(r) REDUCTION(+:s)
do i=1,N
call RANDOM_NUMBER(r) ! thread safe
a(i) = a(i) + func(r) ! func() is thread safe
s = s + a(i) * a(i)

enddo
!$OMP END PARALLEL DO
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Tasking
• Not every problem can be loop-wise parallelized
• std::list<..>: not easily random accessible
• OpenMP provides the task mechanism
• Allows to process elements of a list in parallel

void increment_list_items(node* head) {
#pragma omp parallel {
#pragma omp single {
for(node* p = head; p; p = p->next) {
#pragma omp task
process(p); // p is firstprivate by default

}}}}
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Thread Pinning
• Operating system assigns threads to cores
• Assignment might change during execution
• Assignment might be not optimal
• Consider pinning your threads
• E.g. Likwid provides, among others, pinning

www.github.com/RRZE-HPC/likwid

http://www.github.com/RRZE-HPC/likwid
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Performance Profiling
• Rarely do applications scale nicely
• Tune your parallel implementation
• Start with the most time consuming parts
• But how to identify those?

Intel VTune Amplifier
• Commercial performance profiler with GUI
• Should be used in conjunction with Intel Compiler
• Publicly available if you are an open source dev

http://software.intel.com/en-us/intel-vtune-amplifier-xe

http://software.intel.com/en-us/intel-vtune-amplifier-xe
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Run Serial if Parallel Doesn’t Fly
• If the workload per thread is too low
• Use OpenMP’s IF clause to switch serial execution
• Or limit the number of threads for a region
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Avoid Implicit Barriers
• Most worksharing constructs have implicit barriers
• Sometimes this is not required - use nowait

!$OMP PARALLEL
!$OMP DO
do i=1,N
A(i) = func1(B(i))

enddo
!$OMP END DO NOWAIT
! still in parallel region here. do more work:
!$OMP CRITICAL
CNT = CNT + 1
!$OMP END CRITICAL
!$OMP END PARALLEL
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Minimize Number of Parallel Regions
• Parallelizing inner loops: too much overhead
• Always aim for parallelizing the most outer loop
• Here, move parallel region to include j-loop
• Also gets rid of the reduction

double precision :: R
R = 0.d0
do j=1,N
!$OMP PARALLEL DO REDUCTION(+:R)
do i=1,N
R = R + A(i,j) * B(i)

enddo
!$OMP END PARALLEL DO
C(j) = C(j) + R

enddo
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Avoid Trivial Load Imbalance
• Typical problem with heavily nested loops
• With increasing thread numbers, workload per

thread will drop
• Use collapse to increase iteration space (here MxN)
• Increases the workload by thread and thus scaling

double precision, dimension(N,N,N,M) :: A
!$OMP PARALLEL DO SCHEDULE(STATIC) REDUCTION(+:res) COLLAPSE(2)
do l=1,M
do k=1,N
do j=1,N
do i=1,N

res = res + A(i,j,k,l)
enddo ; enddo ; enddo ; enddo
!$OMP END PARALLEL DO
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Avoid Dynamic/Guided Loop Scheduling
• All scheduling mechanisms (except static)

introduce overhead
• If possible, use static

• If data set is highly imbalanced, go for
dynamic or guided
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CPU 0

Thread 0

CPU 1

Thread 1

Cache

Cache line

Cache

Cache line

Memory

False Sharing
• Threads of different processors
• Modify variables of the same cache line
• Cache line invalidated and forces memory update
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False Sharing
• sum local dimensioned to number of threads
• Small enough to fit in single cache line
• Threads modify adjacent elements!
• Use array padding (insert additional data to

ensure not fitting into a cache line)
• Or: use private variables and reduction

double sum=0.0, sum_local[NUM_THREADS];
#pragma omp parallel num_threads(NUM_THREADS) {
int me = omp_get_thread_num();
sum_local[me] = 0.0;
#pragma omp for
for (i = 0; i < N; i++)

sum_local[me] += x[i] * y[i];
#pragma omp atomic
sum += sum_local[me];

}
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• Since 1990: POSIX Threads (C/C++/Fortran)
• Predominant in today’s HPC: OpenMP (C/C++/Fortran)
• (C/)C++ specific libraries:

• Intel Threading Building Blocks
• Cilk/Intel CilkPlus
• Boost Thread
• STL Thread
• Qt Qthread
• (Charm++) ..
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SoftwareSoftware

• Shared-Memory Parallel Programming
• Data Locality

Locality of Access, Placement Pitfalls, C++ Issues
• OpenMP

Basics, Efficiency
• Alternatives

• Vectorization
• Intrinsics vs Pragmas
• Automatic Vectorization

• Distributed and Hybrid Parallel Programming
• Distributed Parallel Programming
• Hybrid Parallel Programming

Potential Benefits and Drawbacks
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VectorizationVectorization

• SIMD: Single Instruction, Multiple Data
• Different form of parallelization
• Instead of using threads/processes
• Dedicated SIMD execution hardware units are used
• Auto vectorization (compilers) vs. manual vectorization

(intrinsics)
• Unrolling of a loop combined with packed SIMD

instructions
• Packed instructions operate on more than one data

element at a time
• Parallelism!
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• Vectorization: convert scalar algorithm to vector
algorithm

• Requires some programming effort but usually pays off
• Major research is done in automatic vectorization
• Automatic vectorization starts with ”-O2” or higher
• Compiler log reports on vectorization results
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Vector Addition
• a,b,c are integer arrays

for(i=0;i<=MAX;i++)
c[i]=a[i]+b[i];

A[0]

B[0]

C[0]

+ + + +

= = = =

unused

unused

unused unused

unused

unused unused

unused

unused
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A[3]

B[3]

C[3]

+ + + +

= = = =

A[2]

B[2]

C[2]

A[1]

B[1]

C[1]

A[0]

B[0]

C[0]
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General Requirements/Tips for Vectorization
• Loop must be countable: Size known at beginning
• Single entry, single exit: No breaks

• Straight-line code: No branching in loop
• No function calls, except intrinsics and inlined
• Innermost loop of a nest
• Favor inner loops with unit stride
• Use array notations over pointers
• Use aligned data structures
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Memory CPU Memory CPU

4 Byte aligned data access 4 Byte misaligned data access

Data alignment
• A CPU does not read one Byte at a time
• It accesses it in 2,4,8,16,.. chunks at a time
• If data is misaligned: overhead!
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Four word-sized memory cells in a 32-bit computer
0x00000000 0x00000004 0x00000008 0x00000012

int (4 Byte) - aligned
0x00000000 0x00000004 0x00000008 0x00000012

char (1 Byte), short (2 Byte), int (4 Byte) - misaligned
0x00000000 0x00000004 0x00000008 0x00000012

Properly aligned memory using padding
0x00000000 0x00000004 0x00000008 0x00000012
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General Obstacles To Vectorization
• Non-contiguous memory access:

Non-adjacent data requires separate loading
for(int i=0; i<SIZE; i+=2)
b[i] += a[i] * x[i];

• Data dependencies:
Variable is written in one iteration and read in
subsequent iteration (read-after-write dependency)
A[0]=0;
for(j=1; j<MAX; j++)

A[j]=A[j-1]+1;
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Intrinsics
• Use of intrinsic vectorized functions using C style API
• Provide access to instructions without using assembly

E.g. Compute the absolute value of packed 16-bit
integers in a and store it in dest.
__m128i _mm_abs_epi16 (__m128i a)

• m128i: represents register content, can hold:
sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit
integers.
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Pragmas
• Help the compiler!

E.g. ivdep: Discard assumed data dependencies
#pragma ivdep
for (i = 0; i < N; i++) {

a[i] = a[i+k] + 1;
}
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• Advanced Vector Extensions
• Supported by Intel and AMD
• 128/256/512 bit SIMD registers
• Support for compute intensive floating-point calculations

AVX
• Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, ..
• VSC-3 supported

AVX-2
• Haswell, Broadwell, Skylake, ..

AVX-512
• Xeon Phi (Knights Landing), Skylake Xeon
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SoftwareSoftware

• Shared-Memory Parallel Programming
• Data Locality

Locality of Access, Placement Pitfalls, C++ Issues
• OpenMP

Basics, Efficiency
• Alternatives

• Vectorization
• Intrinsics vs Pragmas
• Automatic Vectorization

• Distributed and Hybrid Parallel Programming
• Distributed Parallel Programming
• Hybrid Parallel Programming

Potential Benefits and Drawbacks
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Distributed and Hybrid Parallel ProgrammingDistributed and Hybrid Parallel Programming

Distributed Parallel Programming
• Enable communication between processes
• Thus enables parallel programming
• Processes run on separated, interconnected nodes
• But also on local node

Hybrid Parallel Programming
• Mix distributed parallel programming with node

parallelism
• E.g. shared-memory programming, accelerators ..
• Communication required for inter-node/socket

communication
• On node/socket: switch to node parallelism
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Distributed Parallel Programming
• Enable communication between processes
• Thus enables parallel programming
• Processes run on separated, interconnected nodes
• But also on local node

Hybrid Parallel Programming
• Mix distributed parallel programming with node

parallelism
• E.g. shared-memory programming, accelerators ..
• Communication required for inter-node/socket

communication
• On node/socket: switch to node parallelism
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MPI
• Since the availability of parallel computers
• Which programming model is most appropriate
• Explicit message passing is tedious but most flexible
• Message passing interface (MPI) is the de-facto standard

(for over 25 years)
• MPI provides communication but also parallel file I/O
• MPI is standardized
• Free open source and commercial implementations

available
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Required Information
• Which process is sending the message?
• Where is the data on the sending process?
• What kind of data is being sent?
• How much data is there?
• Which process is going to receive the message?
• Where should the receiving process store the message?
• What amount of data is the receiver prepared to accept?
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Blocking point-to-point communication

std::vector<double> data(N);
MPI_Send(&(data[0]), N, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

Nonblocking point-to-point communication

std::vector<double> data(N);
MPI_Request request;
MPI_ISend(&(data[0]), N, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &request);

Collective communication

std::vector<double> data(N);
MPI_Bcast(&(data[0]), N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
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Basic Idea
• MPI for inter process communication
• Process spawns several threads to do the actual work
• MPI code is augmented with, e.g., OpenMP directives
• Two basic hybrid programming approaches

• Vector mode
• Task mode
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Vector Mode
• All MPI calls are outside of shared-memory regions
• Existing MPI code can be easily extended towards hybrid

do iteration=1,MAXITER
!$OMP PARALLEL DO PRIVATE(..)
do k = 1,N
! Standard 3D Jacobi iteration here ...

enddo
!$OMP END PARALLEL DO
! halo exchange
...
do dir=i,j,k
call MPI_Irecv( halo data from neighbor in -dir direction )
call MPI_Isend( data to neighbor in +dir direction )
call MPI_Irecv( halo data from neighbor in +dir direction )
call MPI_Isend( data to neighbor in -dir direction )

enddo
call MPI_Waitall( )

enddo
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Task Mode
• Most general hybrid programming approach
• MPI communication happens inside shared-memory

region
• Needs to be tailored to thread-safety requirements of the

utilized MPI library
• Approach for, e.g., decoupling computation and

communication
• Task mode provides very high flexibility
• But increases code complexity and size
• Mapping problem: how to assign processes/threads
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!$OMP PARALLEL PRIVATE(iteration,threadID,k,j,i,...)
threadID = omp_get_thread_num()
do iteration=1,MAXITER ...
if(threadID .eq. 0) then
! Standard 3D Jacobi iteration; updating BOUNDARY cells ...
do dir=i,j,k ! After updating BOUNDARY cells do halo exchange
call MPI_Irecv( halo data from -dir) ...

enddo
call MPI_Waitall( )

else ! not thread ID 0
! Remaining threads perform; update of INNER cells 2,...,N-1
! Distribute outer loop iterations manually:
chunksize = (N-2) / (omp_get_num_threads()-1) + 1
my_k_start = 2 + (threadID-1)*chunksize
my_k_end = min((2 + (threadID-1+1)*chunksize-1), (N-2))
do k = my_k_start , my_k_end ! INNER cell updates

do j = 2, (N-1)
do i = 2, (N-1) ...

enddo; enddo; enddo; endif ! thread ID
!$OMP BARRIER

enddo
!$OMP END PARALLEL
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General Remarks
• No general rule whether, e.g., MPI-OpenMP pays off

relative to pure MPI
• General rule of thumb: go pure MPI first
• Pure MPI forces one to think about data locality

(not the case for shared-memory)
• Certainly of interest to couple MPI with accelerators and

co-processors: distributed GPU computing
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Benefits
• Potential re-use of shared-cache
• Introduce additional parallelism to MPI limited

applications
• Additional options for load-balancing
• Overlapping communication with computation
• Potential for reducing MPI overhead at domain

decomposition

Drawbacks
• Additional level of parallelism complicates development
• OpenMP: not forced upon data locality investigations

impact performance
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Hardware
• Gets more and more heterogeneous
• NUMA issues already in single-socket settings

Software
• Use all the parallelism the system gives you
• Use all the parallelism which fits the problem

Reference
• G. Hager, G. Wellein: Introduction to High Performance

Computing for Scientists and Engineers, CRC Press,
ISBN: 9781439811924, 2010.
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