VSC Seminar

Modern Multi-Core Architectures
for Supercomputing

Josef Weinbub

December 11, 2015 W

Christian Doppler Laboratory for High Performance TCAD
Institute for Microelectronics, TU Wien
www.iue.tuwien.ac.at/hptcad/

(@)

Tt

M
|
=
i

HtHH

http://www.iue.tuwien.ac.at/hptcad/

Why Parallel Computing?
-

40 Years of Microprocessor Trend Data

7
10 : H ! Transistors
i ‘ thousands
108 ()
10° b Single-Thread
Performance
10 (SpecINT x 10°)
3 Frequency (MHz)
B 10 e A
A Typical Power
10? Bl ~ (Watts)
A e
1 - Number of
10 L a . Logical Cores
0 A m v v v v
10° ‘ e
1970 1980 1990 2000 2010 2020

Year]

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

© Karl Rupp / www.karlrupp.net :
i i SR FUW*JJ HL

www.karlrupp.net

Why Parallel Computing?
-

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpeclINT x 103)

Frequency (MHz)

Typical Power

(Watts)
Number of
i ™ Logical Cores
A‘ - v v v Yyiv vv N “‘ 9
s) P NP IO)l

I
1970 1980 1990 2000 2010 2020

Year]

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten [
New plot and data collected for 2010-2015 by K. Rupp I

© Karl Rupp / www.karlrupp.net ‘
i i SR f“u‘w\j HL

www.karlrupp.net

Outline
1

Part A - Hardware
Modern Processors
Parallel Computers

Part B - Software
Shared-Memory Parallel Programming
Vectorization
Distributed and Hybrid Parallel Programming

Summary

Outline
1

Part A - Hardware
Modern Processors
Parallel Computers

Part A - Hardware
1

* Modern Processors

+ Stored Program Computer Architecture
* Memory Hierarchies:
Memory Gap, Caches, Prefetch
* Pipelining
+ Multi-Core Processors
+ Multi-Threaded Processors
+ Parallel Computers
- Basics
+ Shared-Memory Computers:
Cache Coherence, UMA, ccNUMA
+ Distributed-Memory Computers
+ Hierarchical (Hybrid) Systems
* Networks

Part A - Hardware
1

* Modern Processors
+ Stored Program Computer Architecture
* Memory Hierarchies:
Memory Gap, Caches, Prefetch
* Pipelining
+ Multi-Core Processors
« Multi-Threaded Processors

* Parallel Computers
- Basics
+ Shared-Memory Computers:
Cache Coherence, UMA, ccNUMA
+ Distributed-Memory Computers
+ Hierarchical (Hybrid) Systems
* Networks &

Stored Program Computer Architecture

CPU
“ Arithmetic Logic
Unit

* Program feeds control unit
 Stored in memory together with data
+ Data required by arithmetic unit |

Input/Output

Stored Program Computer Architecture
1

Two Big Issues

* Memory bottleneck
+ Instructions and data must be fed to control and
arithmetic unit
- Speed of memory interface poses limitation to
compute performance
+ Commonly known as von Neumann bottleneck

Stored Program Computer Architecture
1

Two Big Issues

* Memory bottleneck

+ Instructions and data must be fed to control and
arithmetic unit

- Speed of memory interface poses limitation to
compute performance

+ Commonly known as von Neumann bottleneck

* Inherently sequential architecture

+ A single instruction with a single/group of
operands from memory
+ Single instruction single data (SISD)

Stored Program Computer Architecture
1

Two Big Issues

* Memory bottleneck
+ Instructions and data must be fed to control and
arithmetic unit
- Speed of memory interface poses limitation to
compute performance
+ Commonly known as von Neumann bottleneck
* Inherently sequential architecture
+ A single instruction with a single/group of
operands from memory
+ Single instruction single data (SISD)

However ..
* No widespread alternative within reach
- So, we better make the best out of it) jj \
Atiw N HL

Memory Hierarchies
-

L1 Cache
L2/L3 Cache
Main Memory
HPC Networks
Gigabit Ethernet

Solid State Disk

<

Latency Increases
|)
Bandwidth Increases

Hard Disk Drive

%
I\

o r“H HL

=

11

Memory Hierarchies - Memory Gap
1

100 000 +
@ 10000t
v
[=
B o004
£ < Q.
= o ©
o 22]
= 100+ 54
[)]
o
10 +
Memor
1 t t t t t t
1980 1985 1990 1995 2000 2005 2010
Year |

Memory Hierarchies - Caches
-

* Low-capacity, high-speed memory

* Integrated on CPU-die

* Replicate data lines in main memory

* Required to buffer slow main memory access

+ GFlops/s per core vs memory bandwidth GBytes/s
+ Insufficient to continuously feed arithmetic units

- Additional problem: Memory latency (~100 cycles)
+ Caches can alleviate effects of memory gap

12

Memory Hierarchies - Caches
-

+ Usually two-three cache levels: L1-L3
+ L1 is normally split into two parts

« L1l: for instructions
« L1D: for data

+ Outer cache levels are typically unified

13

13

Memory Hierarchies - Caches
-

+ Usually two-three cache levels: L1-L3
+ L1 is normally split into two parts

+ L1l: for instructions

+ L1D: for data
+ Outer cache levels are typically unified
+ Data load request into register:

+ Is available in cache: cache hit

+ Is not available in cache: cache miss

« Cache miss: data fetch from outer cache levels or in
worst case from main memory

No cache space available: algorithm evicts old data

J
A L JJ
Al T

Memory Hierarchies - Caches

Time

Y

1 |LD |cache miss: latency|use data‘
| 5

[&]

2 | 4 LD |use data‘

c 3 LD |use data‘

(=]

- 4 LDIuse data‘
g

Q

=

’LD Icache miss: latency|use data‘

6 \<—?—> LD |use data‘
7 LD |use data

i
oo

A L JJ
Al T

Memory Hierarchies - Caches

P

P

P

P

L1D

L1D

L1D

L1D

L2

L2

L2

L2

L3

Memory Interface

+ Shared caches in a multi-core setting

¢ Intel Nehalem

| nterconnect

I

oo
.y
ST HL

16

Memory Hierarchies - Prefetch
-

* Provide caches with data ahead of time
* Idea is to hide latency
+ Software prefetching by compilers

* Interleaving special instructions with software pipelined
instruction stream

+ ”Touch” cache lines in advance
* Requires asynchroneous memory operations
+ Hardware prefetcher identifies patterns to read ahead

* Hardware and software prefetchers are used in today’s
processors

I

o
S L
/_j i A\ F\‘t Mijj
g klald JV \

Memory Hierarchies - Prefetch
-

+ Both techniques can only do so much
+ Significant burden on memory subsystem

+ Support of certain number of outstanding prefetch
operations (i.e. pending prefetch requests)

* One prefetch for each cache line transfer

17

17

Memory Hierarchies - Prefetch
-

+ Both techniques can only do so much
+ Significant burden on memory subsystem

+ Support of certain number of outstanding prefetch
operations (i.e. pending prefetch requests)

* One prefetch for each cache line transfer

+ Application with many operations on the cache line will
require less

+ Application with heavy BW demand can overstretch
prefetching

+ Tip: provide long continuous data streams

AN SV

Memory Hierarchies - Prefetch
-

Time

1 |PF |cache miss: latency |LD |use data|
2 LD |use data|
c 3 LD |use data|
9
E 4 LD |use data|
.
3 5 | PF |cache miss: latency|LD |use data|
- 6 LD |use data|

7 LD |use data
|

Pipelining
.
* Pipelining is similar to an assembly line
+ "Workers” are specialized on a single task
+ Forward object to next worker
+ Goal is to optimize the work among workers

19

20

Pipelining
-

+ Complex operations require more than one cycle
+ Apply pipeline complex: “fetch-decode-execute”
- Each stage can operate independently

* Idea: break down complex tasks into simple ones
+ Allows for higher clock rate due to simple tasks

Pipelining
-

Separate B (1) B (2) B (3) B (4) B (5)
mantissa/exponent | C (1) C(2) C (3) C (4) Cc (5)
Multiply B(1)| |B(2)| |B(3)| |B(4)
mantissas Cc (1) Cc(2) Cc(3) C(4)
Add B(1)| [B(2)| |[B(3)| OO®
exponents C(1) C(2) c(3)
Normalize B (1) B (2)
result Cc (1) C(2)
Insert Wind-up B (1)
sign ! c@

+ Timeline for simplified floating-point multiplication

+ Executes vector product: A(:)=B(:)*C(:)

* One result per cycle; four-cycle wind-up phase

* Modern pipeline lengths between 10 and 35 /\
AL FUM**JJ HL

Pipelining
-

Issues
+ Inefficient if short and tight loops are used
+ Operations with long latencies (e.g. square root)
* Pipeline bubble when low degree of pipelining
+ Compiler aims to optimally utilize pipeline
- Stalls if load operation does not deliver data on
time for arithmetic operation

Multi-Core Processors
1

1/0
Core Core
Core Shared Core
Core L3 Cache Core
Core Core
Memory Controller

* Intel Haswell E
+ Desktop, Core i7-5960X, no graphics i

23

24

Multi-Core Processors

* Intel Skylake

&8 |o
o |0 |=
; -
Graphics| LLC g
AR R
= = =

(0] (0]

+ Desktop, Core i7-6700K, with graphics

/j,ﬁf,

Multi-Core Processors
1

6¢c Die 10c Die 12c Die
1/0 1/0 1/0
Core Core Core Core Core Core iCore
Shared
Core L3 Cache Core Core Core Core Shared Core Shared iCore
Core Core Core Shared Core Core L3 Cache Core L3 Cache iCore
L3 Cache
Memory Controller Core Core Core, Core Core
Core Core Memory Controller i Memory Controller
Memory Controller

* Intel lvy Bridge EP, Configurations

* @12c: Note the additional bus, memory controller,
and splitted L3 cache

i
i

% JJ |
Atm AT

25

26

Multi-Threaded Processors
1

All modern processors are heavily pipelined

+ However, often the pipelines cannot be efficiently used
* Make use of additional cores on modern processors

* Threading capabilities

+ Simultaneous Multithreading (SMT)

+ Hyperthreading (Intel’s version of SMT)

27

Multi-Threaded Processors
1

* Main idea: increase number of independent instructions
in pipeline

+ Architectural state is present multiple times
(i.e. registers, stack and instruction pointers)

+ Execution units are not multiplied

+ CPU appears to be composed of several cores (i.e.
logical cores)

* Potential to fill bubbles in pipelines as threads share
execution resources

J
A L JJ
AN SV

Multi-Threaded Processors
1

Execution units

-<—> | Registers | <—> m
~<— | L1D cache O
Memory - L2 cache HRCE
~<— | L1l cache -
< | Control |—> EEEE

* Pipelined microprocessor without SMT
+ White blocks in pipelines denote bubbles

28

Multi-Threaded Processors
1

Execution units
- | o
O
Memory - L2 cache HRCE
||

oo]| moem

* Pipelined microprocessor with two-way SMT

+ Two threads share caches and pipelines but retain
respective architectural state

<— | L1D cache

<—| L1l cache

AN SV

Part A - Hardware
1

* Modern Processors

+ Stored Program Computer Architecture
+ Memory Hierarchies:
Memory Gap, Caches, Prefetch
* Pipelining
« Multi-Core Processors
* Multi-Threaded Processors

* Parallel Computers
- Basics
- Shared-Memory Computers:
Cache Coherence, UMA, ccNUMA
+ Distributed-Memory Computers
+ Hierarchical (Hybrid) Systems
« Networks &

31

Basics
I

Parallel computing solves a problem in cooperative way
+ Uses several compute elements

+ All modern (supercomputer) architectures depend on
parallelism

+ Also: check your phone - Nexus 6P (8 cores) ..
Parallel computing importance will continue to rise

- Dominating concepts are:

+ SIMD: Single Instruction, Multiple Data (e.g. GPUs)
« MIMD: Multiple Instruction, Multiple Data (e.g. Parallel
computers)

|
oo

/ﬁ-\ i f\“,JMijJ L

32

Shared-Memory Computers
1

+ System with number of CPUs

+ Work on common, physical address space

+ Transparent to the programmer, however:

* Uniform Memory Access (UMA)

+ cache-coherent Nonuniform Memory Access (ccNUMA)
+ Regardless: require cache coherence

Shared-Memory Computers - Cache Coherence
1

+ Cache coherence is required in all cache-based
multi-processor systems

+ Copies of cache lines can reside in different caches
+ Imagine: One cache line gets modified ..

+ Cache coherence protocols ensure consistent view of
memory at all times

+ Coherence traffic can hurt application performance if the
same cache line is frequently modified by different
processors (i.e. false sharing)

* Implemented in the hardware (CPU or chipsets)

33

34

Shared-Memory Computers - Cache Coherence
1

1l P2

Cl
3

P
|
|

|

|

ALY [A2 Al
1.l 5. 2.T 14.

Memory

MESI
* M: modified
+ E: exclusive
+ S: shared

- I: invalid JJ |
NS Vi

Shared-Memory Computers - UMA

P P P P P P
L1D L1D L1D [L1D L1D [L1D
L2 L2 L2 L2

Both are UMA!

+ Latency and bandwidth same for processors/memory
+ Aka symmetric multiprocessing (SMP)

+ Limited scalability: memory bus contention

+ E.g. typical single multi-core processor chips are UMA

A L JJ
Al T

35

Shared-Memory Computers - ccNUMA

L1D | L1D L1D [L1D
L2 L2 L2 L2

L3 Coherent L3

’—‘—‘ link ,—‘—‘
Chipset | in { Chipset

[|
‘ Memory ‘ ‘ Memory ‘

* Memory is physically distributed but logically shared

+ Better scalability: Small number of CPUs compete for
shared memory bus

* Physical layout similar to distributed-memory case
* Intel’s UltraPath (UPI)/Qickpath Interconnect (QPI) :"j
+ E.g. 2- to 4-socket HPC node setup (VSC 2/3 uses 2) jj HL

36

37

Distributed-Memory Computers

Communication Network

* No Remote Memory Access (NORMA)

+ Today no system available like that anymore

* However, can be seen as programming model
+ Communication over the network (e.g. MPI)

38

Hierarchical (Hybrid) Systems

Communication Network

Large-scale parallel clusters (VSC-2/3)

A mix of distributed- and shared-memory type

Even more anisotropic than multi-core & ccNUMA
Network an additional layer of communication

Success due to price vs performance

Might also contain accelerators/co-processors

Networks
'

* Networks connect individual compute components
+ Primary importance to overall performance
+ Bandwidth and latency are of importance
* However, latency effects affect most applications
* Large number of compute components:
Topology becomes important!
+ Simple and cheap: Gigabit Ethernet networks
(~ 110 MB/s, ~ 40 — 50 pus)
* Professional clusters: Infiniband networks
(~ 1000 MB/s, ~ 4 — 10 ps)

Networks
'

* Buses
+ Shared medium
+ Used by one communicating device at a time
- E.g. PCI (1-30 GByte/s), CPU-memory (10-50 GByte/s)
+ Issues: Blocking (bandwidth)

40

40

Networks
'

* Buses
+ Shared medium
+ Used by one communicating device at a time
- E.g. PCI (1-30 GByte/s), CPU-memory (10-50 GByte/s)
+ Issues: Blocking (bandwidth)
+ Switched and fat-tree networks
+ Subdivision of communicating devices into groups
+ Fat-tree: fatter links for higher tiers, e.g. VSC-3
+ Issues: Doesn’t scale well (cables, active components)

40

Networks
'

* Buses

+ Shared medium

+ Used by one communicating device at a time

- E.g. PCI (1-30 GByte/s), CPU-memory (10-50 GByte/s)

+ Issues: Blocking (bandwidth)
+ Switched and fat-tree networks

+ Subdivision of communicating devices into groups

+ Fat-tree: fatter links for higher tiers, e.g. VSC-3

+ Issues: Doesn’t scale well (cables, active components)
+ Others: mesh networks, torus networks, hybrids

+ Computing elements located at grid intersections

+ No direct connections between non-neighbors

+ Requires certain routing circuits to control flow

+ E.g. Cray’s Gemini/Aries (1-50 GByte/s),

ccNUMA (40 GByte/s)

41

Networks - Fat Tree
'

42

Networks - Fat Tree

. 24switches
in total

4
N ///%
=
//7// 576 uplinks
A
// \\
B\o(kmg factor 4: 1\\\

« 8lslands in total ® *

e 2aunitsintotal o0 |

<+ 2aunitsintotal o0 |

BustHEA
Computa Nods.

Island #1 Island #8

+ VSC-3’s fat tree network structure it

© Vienna Scientific Cluster / vsc.ac.at /ﬁ

http://vsc.ac.at

Outline
1

Part B - Software
Shared-Memory Parallel Programming
Vectorization
Distributed and Hybrid Parallel Programming

44

Software
1

+ Shared-Memory Parallel Programming
+ Data Locality
Locality of Access, Placement Pitfalls, C++ Issues
+ OpenMP
Basics, Efficiency
+ Alternatives
* Vectorization
+ Intrinsics vs Pragmas
+ Automatic Vectorization
+ Distributed and Hybrid Parallel Programming
* Distributed Parallel Programming
+ Hybrid Parallel Programming
Potential Benefits and Drawbacks

45

Software
1

+ Shared-Memory Parallel Programming

+ Data Locality

Locality of Access, Placement Pitfalls, C++ Issues
+ OpenMP

Basics, Efficiency
+ Alternatives

* Vectorization
* Intrinsics vs Pragmas
+ Automatic Vectorization
* Distributed and Hybrid Parallel Programming

+ Distributed Parallel Programming
+ Hybrid Parallel Programming
Potential Benefits and Drawbacks |

SRR Yaon JJ HL

46

Shared-Memory Parallel Programming
-

* Program consists of threads of control with

- Shared variables

+ Private variables

« Thread communication via read/write shared data

+ Threads coordinate by synchronizing on shared data

+ Threads can be dynamically created and destroyed

+ Other programming models:

+ Distributed-memory
* Hybrid

Shared-Memory Parallel Programming
-

Processes
* Independent execution units
+ Own state and own address space
* Interaction with inter-process communication
+ A process may contain several threads

47

47

Shared-Memory Parallel Programming
-

Processes

* Independent execution units

+ Own state and own address space

* Interaction with inter-process communication
+ A process may contain several threads

Threads

+ All threads within a process share address space
+ Own state but global and heap data are shared
* Interaction via shared variables

47

Shared-Memory Parallel Programming
-

Processes

* Independent execution units

+ Own state and own address space

* Interaction with inter-process communication
+ A process may contain several threads

Threads

+ All threads within a process share address space
+ Own state but global and heap data are shared
* Interaction via shared variables

State

* Instruction pointer
* Register file (one per thread) |
+ Stack pointer (one per thread)

48

Data Locality

=

=

Memory

Memory

Memory ‘ ‘

* Locality problem: Data in nonlocal memory
+ Contention problem: Concurrent local&remote access
* Memory-bound code must use proper page placement
* Pinning must be used to ensure locality

£

N

oo
.y
AS7 HL

49

Data Locality - Locality of Access

PP PP
[[
o F
k] [[(]
< Memory Memory]
[=5
£ S 0
£ = =0
[} [Memory | [Memory | 3
o [[=3
H { F
[[
P P P | P

+ ccNUMA system with four locality domains

+ Zero, one, or two hops required

+ Contention problem cannot be eliminated l
* No interconnect turns ccNUMA into UMA

50

Data Locality - Locality of Access

double precision, allocatable, dimension(:) :: A, B,
allocate(A(N), B(N), C(N), D(N))
! initialization
do i=1,N
B(i) = i; C(i) = mod(i,5); D(i) = mod(i,10)
enddo

do j=1,R
!'SOMP PARALLEL DO
do i=1,N
A(i) = B(i) + C(i) * D(i)
enddo
'SOMP END PARALLEL DO
call dummy (A,B,C,D)
enddo

» Vector triad code in Fortran
* No first touch policy - scaling will be bad ..
- .. if data does not fit in the cache!

D

Sil

Data Locality - Locality of Access

! initialization
!'SOMP PARALLEL DO
do i=1,N
B(i) = 1i; C(i) = mod(i,5); D(i) = mod(i,10)
enddo
1'SOMP END PARALLEL DO

+ Better: memory pages reside in respective domains

52

Data Locality - Locality of Access

N=1000000
A(N),B(N)

integer, parameter::
double precision

! executed on single LD
READ (1000) A
! contention problem
!'SOMP PARALLEL DO
do i =1, N

B(i) = func(A(i))
enddo
!'SOMP END PARALLEL DO

integer,parameter:: N=1000000
double precision :: A(N),B(N)
!'SOMP PARALLEL DO
do i=1,N
A(i) = 0.d0
enddo
!'SOMP END PARALLEL DO
' A is mapped now
READ (1000) A
!'SOMP PARALLEL DO
do i =1, N
B(i) = func(A(i))
enddo
!'SOMP END PARALLEL DO

+ Serial is OK, but first first-touch in parallel!

Data Locality - Locality of Access
-

* Proper first-touching not always possible
+ Think of dynamically partitioned parallel loops:
Usually used in poorly load-balanced scenarios
+ Successive parallel loops:
Threads should get always same partition

+ Cannot avoid global variables?
Make local first-touched copies

53

54

Data Locality - Placement Pitfalls
-

+ ccNUMA offers superior scalability for
memory-bound code

+ UMA easier to handle and no locality handling
* However, ccNUMA is/will be the likely scenario
* Placement optimizations not always possible

* Dynamic loop scheduling

55

Data Locality - Placement Pitfalls
-

! initialization
!'SOMP PARALLEL DO SCHEDULE (STATIC,512)
do i=1,N
A(i) = 0; B(i) = 1i; C(i) = mod(i,5); D(i) = mod(i,10)
enddo
1'SOMP END PARALLEL DO

do j=1,R

!SOMP PARALLEL DO SCHEDULE (RUNTIME)
do i=1,N

A(i) = B(i) + C(i) * D(i)
enddo

'SOMP END PARALLEL DO
call dumny (A,B,C,D)
enddo

+ Hope for statistically even distribution of access
+ Vector triad to fathom impact of random access |
* Round Robin static initialization ”

P ped
~ 4 AT

Data Locality - Placement Pitfalls

LDO data
LD1 data

FS cache

Locality Domain 0
Locality Domain 1

LDO data

Operating systems reserve file /O caches for reuse

Might force nonlocal data placement

FS buffer cache can be a remnant from other job

Option: sweep memory - allocate all memory /|
A W‘M**JJ HL

Data Locality - C++ Issues
1

+ C and Fortran straightforward in handling data
locality
+ C++’s object oriented features offers some problems

+ Arrays of objects
- Standard Template Library

S

Data Locality - C++ Issues

class D {
double d;
public:
D (double _d=0.0) throw() : d(_d) {}
~D () throw() {}

inline D& operator=(double _d) throw() {d=_d; return xthis;}
friend D operator+ (const D&, const D&) throw();
friend D operatorx (const D&, const D&) throw();

bi
+ Compare

double * array = new double (n); with
D * array = new D(n);

+ Constructor initializes immediately
* Placement with locality domain which issued new

+ Obvious option (don’t default initialize) not always
possible/desirable

Data Locality - C++ Issues

voidx D::operator new[] (size_t n) {

char *p = new char[n];
// allocate
size_t 1i,73;
#pragma omp parallel for private(j) schedule (runtime)
for (i=0; i<n; 1 += sizeof (D))

for (j=0; j<sizeof (D); ++7j)

pli+3] = 0;

return p;

}
* Provide overload for new operator
+ Manual parallel first touch

59 St g

60

Data Locality - C++ Issues

template <class T> class NUMA_Allocator ({

// allocate raw memory including page placement
pointer allocate(size_type numObjects, const void xlocalityHint=0)
size_type len = numObjects » sizeof (value_type);
char *p = static_cast<charx>(std::malloc(len));
if (!omp_in_parallel()) {
#pragma omp parallel for schedule (runtime) private (ofs)

for (size_type i=0; i<len; i+=sizeof (value_type)) {
for (size_type j=0; j<sizeof (value_type); ++7)
pli+3]1=0;

}
return static_cast<pointer> (m);
|

- Default STL allocator is not NUMA-aware
* You can provide your own!

OpenMP
e

+ POSIX threads not very convenient for HPC

+ Majority is loop-centric ..

+ OpenMP is a directive-based language

+ Central entity is a thread

* Non-OpenMP compiler would simply ignore

+ Each well-written OpenMP program is a serial program

+ VSC-3 currently supports
OpenMP 3.1 (GNU GCC 4.8.2) and
OpenMP 4.0 (Intel Compilers 16.0.0)

#pragma omp parallel for
for(int i = 0; 1 < N; i++)
std::cout << i << std::endl;

61

OpenMP
e

l Serial region
Fork

|| o
|

* Fork-join model i

Join

62

63

OpenMP

+ Parallel regions are indicated with parallel pragma

C/C++

#pragma omp parallel
{
// parallel region
do_work_package (omp_get_thread_num(), omp_get_num_threads());

}

Fortran

!'SOMP PARALLEL

! parallel region

call do_work_package (omp_get_thread_num(), omp_get_num_threads())
!'SOMP END PARALLEL

i
i

SR F‘UMﬁJJ HL

OpenMP
e

+ Controlling an application’s number of threads

Environment variable

$ export OMP_NUM_THREADS=4
$./a.out

Set during run time

omp_set_num_threads (4)

64

OpenMP
e

Data scoping

+ All variables before parallel region are accessible
+ Explicitly control data scoping:

* private(...)
* shared(...)
* firstprivate(...)

+ All variables within parallel region are private

65

OpenMP
e

#include <omp.h>
main () {
int nthreads, tid;
/* Fork a team of threads with each thread having a
private tid variable =/
#pragma omp parallel private(tid)
{
/* Obtain and print thread id */
tid = omp_get_thread_num() ;
printf ("Hello World from thread = %d\n", tid);

/+ Only master thread does this */

if (tid ==

{

nthreads = omp_get_num_threads();

printf ("Number of threads = $d\n", nthreads);
}

} /# All threads join master thread and terminate x/

66

OpenMP
e

Loop Parallelization and Scheduling

* Loop parallelization is most used mechanism
- Different scheduling techniques available
* schedule (type[, chunk])
* static
* dynamic
* guided
* collapse: nested loops can be collapsed into one large
iteration space
* nowait: threads do not wait at the end of the parallel
region

oo

% JJ |
Atm AT

67

68

OpenMP

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main () |
int i, chunk;
float a[N], b[N], c[N];
/+* Some initializations #*/
for (i=0; i < N; 1i++4)
afi] = b[i] =1 % 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private (i)
{
#pragma omp for schedule (dynamic,chunk) nowait
for (i=0; i < N; i++)
cl[i] = ali]l + blil;
} /+ end of parallel section */

+ Can be merged into one scope

OpenMP
e

Synchronization
+ Sometimes this is not avoidable
* critical: only one thread executes the part
* atomic: faster but only available for few executions
* barrier: all threads will wait here for each other
+ Should be avoided at all costs!

69

70

OpenMP
e

Reductions
+ Expression suppotrt is restricted
* C++: x++, ++x, x = x op expr,

double precision :: r,s
double precision, dimension(N) :: a

call RANDOM_SEED ()
!'SOMP PARALLEL DO PRIVATE (r) REDUCTION (+:s)

do i=1,N
call RANDOM_NUMBER (r) ! thread safe
a(i) = a(i) + func(r) ! func() is thread safe
s = s + a(i) * a(i)

enddo

!$OMP END PARALLEL DO

OpenMP
e

Tasking
* Not every problem can be loop-wise parallelized
* std::1list<..>: not easily random accessible
+ OpenMP provides the task mechanism
* Allows to process elements of a list in parallel

void increment_list_items (nodex head) {
#pragma omp parallel ({
#pragma omp single {
for (nodex p = head; p; p = p—>next) {
#pragma omp task
process (p); // p is firstprivate by default
P}

OpenMP - Efficient Programming
-

Thread Pinning
+ Operating system assigns threads to cores
+ Assignment might change during execution
+ Assignment might be not optimal
+ Consider pinning your threads
+ E.g. Likwid provides, among others, pinning

www.github.com/RRZE-HPC/likwid

http://www.github.com/RRZE-HPC/likwid

OpenMP - Efficient Programming
-

Performance Profiling
* Rarely do applications scale nicely
* Tune your parallel implementation
- Start with the most time consuming parts
* But how to identify those?

73

http://software.intel.com/en-us/intel-vtune-amplifier-xe

73

OpenMP - Efficient Programming

Performance Profiling
* Rarely do applications scale nicely
* Tune your parallel implementation
- Start with the most time consuming parts
* But how to identify those?

Intel VTune Amplifier
+ Commercial performance profiler with GUI
+ Should be used in conjunction with Intel Compiler
* Publicly available if you are an open source dev

http:/software.intel.com/en-us/intel-vtune-amplifier-xe \

http://software.intel.com/en-us/intel-vtune-amplifier-xe

OpenMP - Efficient Programming
-

Run Serial if Parallel Doesn’t Fly
+ If the workload per thread is too low
+ Use OpenMP’s IF clause to switch serial execution
+ Or limit the number of threads for a region

74

75

OpenMP - Efficient Programming
-

Avoid Implicit Barriers
+ Most worksharing constructs have implicit barriers
+ Sometimes this is not required - use nowait

!'SOMP PARALLEL
!'SOMP DO
do i=1,N
A(i) = funcl(B(i))
enddo
!'SOMP END DO NOWAIT
! still in parallel region here. do more work:
!'SOMP CRITICAL
CNT = CNT + 1
!'SOMP END CRITICAL
! SOMP END PARALLEL

OpenMP - Efficient Programming
-

Minimize Number of Parallel Regions
+ Parallelizing inner loops: too much overhead
- Always aim for parallelizing the most outer loop
* Here, move parallel region to include j-loop
+ Also gets rid of the reduction

double precision :: R
R = 0.d0
do j=1,N
!'SOMP PARALLEL DO REDUCTION (+:R)
do i=1,N
R =R + A(i,]) * B(i)
enddo
!'SOMP END PARALLEL DO
C(j) = C(J) +R
enddo

OpenMP - Efficient Programming

Avoid Trivial Load Imbalance
+ Typical problem with heavily nested loops

+ With increasing thread numbers, workload per
thread will drop

+ Use collapse to increase iteration space (here MxN)
* Increases the workload by thread and thus scaling

double precision, dimension(N,N,N,M) :: A

!'SOMP PARALLEL DO SCHEDULE (STATIC) REDUCTION (+:res) COLLAPSE (2)
do 1=1,M

do k=1,N
do j=1,N
do i=1,N
res = res + A(i,J,k,1)

enddo ; enddo ; enddo ; enddo A
!'SOMP END PARALLEL DO i

A L JJ
Al T

OpenMP - Efficient Programming

Avoid Dynamic/Guided Loop Scheduling

+ All scheduling mechanisms (except static)
introduce overhead

* If possible, use static

- If data set is highly imbalanced, go for
dynamic Or guided

79

OpenMP - Efficient Programming

False Sharing

CPUO CPU 1
[rwesso |
I / I
Cache Cache
Cache line Cache line
LMEEEEEEEAEYEEEEEE
I I

Memory

e

» Threads of different processors
* Modify variables of the same cache line

+ Cache line invalidated and forces memory update

£

N

i
oo

Y JJ L

OpenMP - Efficient Programming
-

False Sharing
* sum_local dimensioned to number of threads
+ Small enough to fit in single cache line
+ Threads modify adjacent elements!
+ Use array padding (insert additional data to
ensure not fitting into a cache line)
+ Or: use private variables and reduction

double sum=0.0, sum_local [NUM_THREADS];
#pragma omp parallel num_threads (NUM_THREADS) {
int me = omp_get_thread_num();
sum_local[me] = 0.0;
#pragma omp for
for (i = 0; i < N; i++)
sum_local[me] += x[i] * y[i];
fpragma omp atomic
sum += sum_local [me];

81

Alternatives
1

+ Since 1990: POSIX Threads (C/C++/Fortran)
* Predominant in today’s HPC: OpenMP (C/C++/Fortran)

* (C/)C++ specific libraries:
* Intel Threading Building Blocks
 Cilk/Intel CilkPlus
+ Boost Thread
« STL Thread
- Qt Qthread
* (Charm++) ..

Software
..

+ Shared-Memory Parallel Programming
- Data Locality
Locality of Access, Placement Pitfalls, C++ Issues
+ OpenMP
Basics, Efficiency
+ Alternatives

* Vectorization
* Intrinsics vs Pragmas
+ Automatic Vectorization
+ Distributed and Hybrid Parallel Programming

- Distributed Parallel Programming
* Hybrid Parallel Programming
Potential Benefits and Drawbacks

82

Vectorization
1

+ SIMD: Single Instruction, Multiple Data

- Different form of parallelization

* Instead of using threads/processes

* Dedicated SIMD execution hardware units are used

+ Auto vectorization (compilers) vs. manual vectorization
(intrinsics)

83

83

Vectorization

SIMD: Single Instruction, Multiple Data

Different form of parallelization

Instead of using threads/processes

Dedicated SIMD execution hardware units are used
Auto vectorization (compilers) vs. manual vectorization
(intrinsics)

Unrolling of a loop combined with packed SIMD
instructions

Packed instructions operate on more than one data
element at a time

Parallelism!

AN SV

Vectorization
1

+ Vectorization: convert scalar algorithm to vector
algorithm

* Requires some programming effort but usually pays off
* Major research is done in automatic vectorization

+ Automatic vectorization starts with ”-02” or higher

« Compiler log reports on vectorization results

85

Vectorization

Vector Addition
* a, b, c are integer arrays

for(l 0; 1<=MAX; 1++)
cli i]+b[i]

mmnmm
__Cl0] | unused | unused | unused

" y JJ |
Ahla AT

Vectorization

86

87

Vectorization

General Requirements/Tips for Vectorization

Loop must be countable: Size known at beginning
Single entry, single exit: No breaks

Straight-line code: No branching in loop

No function calls, except intrinsics and inlined
Innermost loop of a nest

Favor inner loops with unit stride

Use array notations over pointers

Use aligned data structures

88

Vectorization
1

Memory CPU Memory CPU

2

4 Byte aligned data access 4 Byte misaligned data access

Data alignment

* A CPU does not read one Byte at a time
- It accesses it in 2,4,8,16,.. chunks at a time
+ If data is misaligned: overhead!

89

Vectorization - Data Alighment

Four word-sized memory cells in a 32-bit computer

R EEEN EEn
int (4 Byte) - aligned

w0 T T

char (1 Byte), short (2 Byte), int (4 Byte) - misaligned
e RN mEN

Properly aligned memory using padding

i T T

Vectorization
1

General Obstacles To Vectorization

* Non-contiguous memory access:
Non-adjacent data requires separate loading
for (int i=0; i<SIZE; i+=2)
b[i] += a[i] * x[i];
+ Data dependencies:
Variable is written in one iteration and read in
subsequent iteration (read-after-write dependency)
A[0]=0;

for (j=1; j<MAX; j++)
A[j]1=A[j-1]1+1;

90

Intrinsics vs Pragmas
-

Intrinsics

+ Use of intrinsic vectorized functions using C style API

* Provide access to instructions without using assembly
E.g. Compute the absolute value of packed 16-bit
integers in a and store it in dest.
_ ml28i mm abs _epil6é (_ ml28i a)

+ _ml28i: represents register content, can hold:
sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit
integers.

91

Intrinsics vs Pragmas
-

Pragmas

* Help the compiler!
E.g. ivdep: Discard assumed data dependencies
#pragma ivdep
for (i = 0; i < N; i++) {
a[i] = a[i+k] + 1;
}

SR F‘UM**JJ HL

92

93

AVX
. ___

+ Advanced Vector Extensions

+ Supported by Intel and AMD

+ 128/256/512 bit SIMD registers

+ Support for compute intensive floating-point calculations

AVX

+ Sandy Bridge, Ilvy Bridge, Haswell, Broadwell, Skylake, ..
+ VSC-3 supported

AVX-2
* Haswell, Broadwell, Skylake, ..

AVX-512
+ Xeon Phi (Knights Landing), Skylake Xeon

N f\“,JM*JJ L

Software
1

+ Shared-Memory Parallel Programming
- Data Locality
Locality of Access, Placement Pitfalls, C++ Issues
+ OpenMP
Basics, Efficiency
+ Alternatives
* Vectorization

+ Intrinsics vs Pragmas
+ Automatic Vectorization

+ Distributed and Hybrid Parallel Programming

+ Distributed Parallel Programming
* Hybrid Parallel Programming
Potential Benefits and Drawbacks |

94

95

Distributed and Hybrid Parallel Programming
-

Distributed Parallel Programming
+ Enable communication between processes
* Thus enables parallel programming
* Processes run on separated, interconnected nodes
+ But also on local node

SR FUM**JJ HL

95

Distributed and Hybrid Parallel Programming
-

Distributed Parallel Programming
+ Enable communication between processes
* Thus enables parallel programming
* Processes run on separated, interconnected nodes
+ But also on local node

Hybrid Parallel Programming

+ Mix distributed parallel programming with node
parallelism

+ E.g. shared-memory programming, accelerators ..

« Communication required for inter-node/socket
communication

* On node/socket: switch to node parallelism JJ HL
‘rt«jMix

I

At

96

Distributed-Memory Parallel Programming
-

MPI
+ Since the availability of parallel computers
+ Which programming model is most appropriate
+ Explicit message passing is tedious but most flexible

+ Message passing interface (MPI) is the de-facto standard
(for over 25 years)

+ MPI provides communication but also parallel file I/O
* MPI is standardized

* Free open source and commercial implementations
available

J
A L JJ
Al T

Distributed-Memory Parallel Programming
-

Required Information
+ Which process is sending the message?
« Where is the data on the sending process?
« What kind of data is being sent?
« How much data is there?
+ Which process is going to receive the message?
+ Where should the receiving process store the message?
+ What amount of data is the receiver prepared to accept?

I

o
S
/j L. M it Mijj H.l;
™\ Joc / «J :

98

Distributed-Memory Parallel Programming
-

Blocking point-to-point communication

std: :vector<double> data(N);
MPI_Send (& (data[0]), N, MPI_DOUBLE, 0, 0, MPI_COMM WORLD) ;

Nonblocking point-to-point communication

std: :vector<double> data(N);
MPI_Request request;
MPI_ISend(&(data[0]), N, MPI_DOUBLE, 0, 0, MPI_COMM WORLD,

Collective communication

std: :vector<double> data(N);
MPI_Bcast (& (data[0]), N, MPI_DOUBLE, 0, MPI_COMM WORLD) ;

ﬁ’\ 4

&request);

Hybrid Parallel Programming
-

Basic Idea
* MPI for inter process communication
* Process spawns several threads to do the actual work
* MPI code is augmented with, e.g., OpenMP directives

* Two basic hybrid programming approaches

* Vector mode
+ Task mode

99

Hybrid Parallel Programming
-

Vector Mode
+ All MPI calls are outside of shared-memory regions
+ Existing MPI code can be easily extended towards hybrid

do iteration=1,MAXITER
!SOMP PARALLEL DO PRIVATE(..)
do k = 1,N
! Standard 3D Jacobi iteration here ...
enddo
!SOMP END PARALLEL DO
! halo exchange

do dir=i, j,k
call MPI_Irecv(halo data from neighbor in -dir direction)
call MPI_Isend(data to neighbor in +dir direction)
call MPI_TIrecv(halo data from neighbor in +dir direction)
call MPI_Isend(data to neighbor in -dir direction) il
enddo

call MPI_Waitall() a
enddo /j%, A Y it
3oL JV

100

Hybrid Parallel Programming
-

Task Mode
* Most general hybrid programming approach
* MPI communication happens inside shared-memory
region
* Needs to be tailored to thread-safety requirements of the
utilized MPI library

+ Approach for, e.g., decoupling computation and
communication

+ Task mode provides very high flexibility
* But increases code complexity and size
* Mapping problem: how to assign processes/threads

AN SV

101

Hybrid Parallel Programming

!'SOMP PARALLEL PRIVATE (iteration,threadID,k, j, 1,
threadID = omp_get_thread_num/()
do iteration=1,MAXITER

if (threadID .eq. 0) then

! Standard 3D Jacobi iteration;

updating BOUNDARY cells
do dir=i, 3,k !

After updating BOUNDARY cells do halo exchange
call MPI_Irecv(halo data from -dir)
enddo

call MPI_Waitall()
else ! not thread ID O
! Remaining threads perform; update of INNER cells 2,...,N-1
Distribute outer loop iterations manually:
chunksize (N-2) / (omp_get_num_threads()-1) + 1
my_k_start = 2 + (threadID-1)*chunksize
my_k_end = min((2 + (threadID-1+1)*chunksize-1), (N-2))
do k = my_k_start , my_k_end ! INNER cell updates
do j = 2, (N-1)
do i = 2, (N-1)
enddo; enddo; enddo; endif ! thread ID %
50MP BARRIER
enddo

!SOMP END PARALLEL &‘LLﬁJJ
N [\
102 ﬁ JV

L~
=

Hybrid Parallel Programming - Benefits/Drawbacks
-

General Remarks

* No general rule whether, e.g., MPI-OpenMP pays off
relative to pure MPI

+ General rule of thumb: go pure MPI first
* Pure MPI forces one to think about data locality
(not the case for shared-memory)

+ Certainly of interest to couple MPI with accelerators and
co-processors: distributed GPU computing

103

Hybrid Parallel Programming - Benefits/Drawbacks
-

Benefits
» Potential re-use of shared-cache

* Introduce additional parallelism to MPI limited
applications

+ Additional options for load-balancing
+ Overlapping communication with computation

* Potential for reducing MPI overhead at domain
decomposition

Drawbacks
+ Additional level of parallelism complicates development

+ OpenMP: not forced upon data locality investigations
impact performance
Sy

104

Outline
1

Summary

Summary
-

Hardware
+ Gets more and more heterogeneous
* NUMA issues already in single-socket settings

Software
+ Use all the parallelism the system gives you
+ Use all the parallelism which fits the problem

Reference

+ G. Hager, G. Wellein: Introduction to High Performance
Computing for Scientists and Engineers, CRC Press,
ISBN: 9781439811924, 2010.

A L JJ
Al T

106

	Part A - Hardware
	Part B - Software
	Summary

